Network Modelling and PSTN-NGN Migration

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architecture,
Tunis, November 2005

Dipl.-Ing. Soufiane El Bouarfati
Dipl.-Ing. Frank Weber
Prof. Dr.-Ing. Ulrich Trick

University of Applied Sciences Frankfurt/Main
Research Group for Telecommunication Networks
Kleiststraße 3
D-60318 Frankfurt
Germany
Tel.: (+49) 6196/641127
E-Mail: trick@e-technik.org
Web: www.e-technik.org

This work was partially funded by the Bundesministerium für Bildung und Forschung of the
Federal Republic of Germany (Förderkennzeichen 1711403). The authors alone are responsible
for the content of the paper.

Prof. Dr.-Ing. U. Trick
University of Applied Sciences Frankfurt
Research Group for telecommunication networks

Review

1 Introduction

2 New Network Model

3 Procedure for Designing a Network

4 Interworking between Networks

5 PSTN-NGN Migration
1 Introduction

Changes in Telecommunication Networks
- NGN (Next Generation Networks), Voice/All over IP, UMTS Release 5, Fixed/mobile Convergence
- Network integration: e.g. PSTN, ISDN, GSM
- More complex networks

Reduction of complexity
- By using a structured network model
- OSI Reference Model with 7 Layers, ISDN- and generic protocol reference model
- But: Restricted to certain Layers or Strata
- But: Important network functions such as „Services“, „Mobility“, „Security“, „Quality of Service“ are spread over different Layers and Planes → not modelable

→ New network model required!

2 New Network Model

Characteristics
- For modelling arbitrary Telecommunication Networks
- 1) Graphical Model
- 2) Calculation Model for variant calculation
- Strata: Layer(s)
- Planes
- Functional columns
- Network Management
- Concrete network characteristics such as number of subscribers, traffic dimensions

→ Overcoming the restrictions of OSI Reference Model

→ Solving the problem of modelling overall network functions such as Security and Mobility
New Network Model with Strata and Functional Columns

3 Procedure for Designing a Network –
Step 1: Definition of Requirements

– Step-by-Step modelling

Step 1: Definition of requirements for
– Basic network functions
– Services
– Security
– Mobility
– Quality of Service
– Network Management
– Network Characteristics

→ „Natural“ approach
Step 3: Allocating Network Functions to Network Nodes

Type of Network, e.g. SIP/IP-based:
→ SIP User Agent
→ SIP Registrar Server
→ SIP Proxy Server
→ SIP Application Server
→ Conference Server
→ IP Router
→ Firewall
→ Bandwidth Broker

- One individual column-based network model for each type of network element
- Each network element model = Subset of total network model
- Overlap of all network element models = total network model

Step 4: Complete Functions in one or more Nodes if necessary

- Additional functions are automatically adopted from nodes into total network model

Step 5: Export Network Characteristics from Graphical Model into Calculation Model

- Automated readout of numeric network characteristics (e.g. number of subscribers, traffic dimensions, costs) from up to four graphical network models

Step 6: Use Calculation Model

- Add further numeric characteristics to imported characteristics if necessary
- Network calculations, network optimisations, migration scenarios
- Arbitrary number of single scenarios for time sequence simulation

Step 7: Export Results from Calculation Model into Graphical Model
Procedure for Designing a Network - Overview

1. **Network to be modelled**
2. **Network Requirements**
 - Deriving Functions for the Network
 - Allocating Functions to Network Nodes
3. **Graphical Model**
4. **Export Network Characteristics**
5. **Calculation Model**
 - Network Calculations
 - Migration Scenarios
 - Network Optimisation
7. **Results from Calculation Model**

4 Network Interworking

- In future: pure IP networks such as SIP/IP fixed networks, UMTS Release 7
- While still converging: heterogeneous networks, both circuit and packet switched, different protocol stacks

→ Interworking, gateways for connecting (2) networks

- Steps 1 and 2: Graphical Model for each of the 2 networks
- Step 8: Merging both Graphical Models → Relationship of network functions, Interworking Function (e.g. ISUP-SIP)
- Step 9: Allocating Interworking Functions to network nodes (e.g. Media Gateway Controller)

- Full Model Realisation with EXCEL and VBA (Visual Basic for Applications)
Interworking of two different Networks

X-Y Interworking Function

Network X, e.g. PSTN Network

Network Y, e.g. SIP/IP Network

IWF

5 PSTN-NGN Migration

Network 1
PSTN

AGW

Network 2
SIP/IP

TGW

RGW

PSTN Phone

IP Phone

SIP: Session Initiation Protocol
PSTN: Public Switched Telephone Network

TGW: Trunking Gateway
AGW: Access Gateway
RGW: Residential Gateway
PSTN-/SIP/IP Migration

User Traffic
- 0.119 Erl per PSTN subscriber
- 0.4 Erl per SIP/IP subscriber

Trunking Gateway (TGW)
- Traffic: 7,200 Erl (240 E1 à 30 Erl)
- Cost: 720 CU (Cost Unit)

Access Gateway (AGW)
- Traffic: 2,380 Erl (20,000 PSTN subscriber à 0.119 Erl)
- Cost: 12,500 CU

Residential Gateway (RGW)
- Traffic: 0.119 Erl
- Cost: 1.2 CU

IP-Phone
- Traffic: 0.4 Erl
- Cost: 1 CU

Subscriber Development in case of linear Migration

Subscriber Development

<table>
<thead>
<tr>
<th>Subscriber</th>
<th>Point of Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10,000,000</td>
<td>5</td>
</tr>
<tr>
<td>20,000,000</td>
<td>10</td>
</tr>
<tr>
<td>30,000,000</td>
<td>15</td>
</tr>
<tr>
<td>40,000,000</td>
<td>20</td>
</tr>
<tr>
<td>50,000,000</td>
<td>25</td>
</tr>
<tr>
<td>60,000,000</td>
<td>30</td>
</tr>
</tbody>
</table>

53 Mio PSTN Subscriber
53 Mio SIP/IP Subscriber
Number of Gateways required

![Graph showing the number of gateways required over time.](image)

Migration Costs

![Graph showing migration costs over time.](image)
Interconnection of four different Networks

PSTN-SIP/IP- and GSM-IMS-Migration → All-IP Network

- 0,119 Erl average traffic per bearer channel (fixed subscriber)
- max. 50000 bearer channels per local exchange

- 0,4 Erl average traffic per SIP/IP subscriber
- max. 1 Million subscriber per CS (Call Server = SIP/IP-Softswitch)

- 0,025 Erl average traffic per GSM subscriber
- max. 150000 mobile subscriber per MSC (Mobile Switching Center)

- 0,4 Erl average traffic per IMS subscriber
- max. 1 million subscriber per S-CSCF (Serving-Call Session Control Function)

- max. 19354 Erl per IP/PSTN- or IMS/GSM-Media Gateway
- GSM/IP- and PSTN/IP-Gateways exchangeable

Prof. Dr.-Ing. U. Trick
University of Applied Sciences Frankfurt

Research group for telecommunication networks

All rights reserved
Subscriber Development in case of simultaneous linear Migration of 4 Networks

Subscriber Development

Number of Switching Node required

Number of LEs, CSs, MSCs and CSCFs required in case of 4 Networks Migration
Number of Media Gateways in case of simultaneous linear Migration of 4 Networks

Subscriber Development in case of sequential linear Migration of 4 Networks: 1. PSTN, 2. GSM
Number of Media Gateways required in case of sequential linear Migration of 4 Networks: 1. PSTN, 2. GSM

- Redundant PSTN-SIP/IP-Gateways can be reused for GSM-SIP/IP and GSM-IMS

Subscribers Development in case of sequential linear Migration of 4 Networks: 1. GSM, 2. PSTN

- Rapid SIP/IP Migration
- Reduced PSTN-SIP/IP-Gateways can be reused for GSM-SIP/IP and GSM-IMS

All rights reserved
Number of Media Gateways required in case of sequential linear Migration of 4 Networks: 1. GSM, 2. PSTN

<table>
<thead>
<tr>
<th>Point of Time</th>
<th>Piece</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

- Many GSM subscribers
- 0.4 Erl per IMS user

Summary

- Use of the new network model recommendable
- Proceed according to the steps 1 to 9
- Migration of circuit to packet switched network
 - very strong reduction of the number of switching systems
- Minimization of redundant media gateways by clever migration
- Possibility of minimization of PSTN-SIP/IP migration costs by clever model use
- Choose the most suitable Gateway type in each case
- Migration costs can be related to providers (TGW, AGW, RGW) or users (IP-Phone, RGW)