
Framework for Automated Functional Testing of
P2P-based M2M Applications

Besfort Shala, Patrick Wacht, Ulrich Trick, Armin
Lehmann

Research Group for Telecommunication Networks
Frankfurt University of Applied Sciences

Frankfurt/M., Germany
shala@e-technik.org

 Besfort Shala, Bogdan Ghita, Stavros Shiaeles
Centre for Security

Communications and Network Research
University of Plymouth

Plymouth, UK

Abstract—This publication presents a novel concept for
automated testing of decentralised services and applications in
Peer-to-Peer (P2P) connected Machine-to-Machine (M2M)
networks. Different challenges and requirements for testing are
defined and a novel testing framework with a special testing
architecture for functional testing is introduced. Furthermore,
this publication describes a novel concept for deriving and
generating test cases in M2M applications composed by several
services.

Keywords— M2M; P2P; Service and Application; Functional
automated testing

I. INTRODUCTION

Building surveillance, energy management, traffic
management, electro mobility and ambient assisted living are
only a few Machine-to-Machine (M2M) application fields
which are present nowadays. According to the European
Telecommunications Standards Institute (ETSI), M2M
applications are defined as “applications that run the service
logic and use Service Capabilities accessible via open
interfaces” [1]. Previous papers have defined requirements and
concepts to realise service and application provision in M2M.
The work and investigations of this research paper are based on
the P2P-based M2M application (P2P4M2M) framework
which offers new possibilities for applications, realised by
several peers, independent of central instances or corporations
[2].

Service 1

Peer A

SMF

Service 2

Peer B

SMF

Peer N
SMF

Peer D

SMF

Service 3

Peer C

SMF

SIP-INFO

M2M community
Mobile Peers

Service 1

Peer A

SMF

Service 2

Peer B

SMF

Peer N
SMF

Peer D

SMF

Service 3

Peer C

SMF

SIP-INFO

M2M community
Mobile Peers

Peer E

SMF

SCE SDP

X-AxisX-Axis

Fig. 1. P2P connected peers within a M2M community [2]

Reference [2] defines a framework that realises service and
application provisioning using P2P networking in M2M
application field. An application consists of one or more
underlying services that are combined (i.e. aggregated or
composed). Also, the use of the community concept described
in [2] helps to avoid legal restrictions, adjust different interests
among the peers and ensure optimisation and forming P2P
networks. Fig. 1 shows the structure of the P2P connected
peers within an M2M community based on [2]. Besides many
advantages of the service provisioning concept, [2] does not
consider approaches for testing P2P-based services/
applications in M2M and does not provide strategies to handle
security risks. Therefore, a novel testing framework is required
to enable testing of heterogeneous and decentralised services
and applications in the P2P4M2M framework.

The aim of this paper is to illustrate the challenges and
requirements of testing services and applications in P2P4M2M
and to define a novel concept for functional automated testing.
The testing methodology in this concept is based on model-
based testing because of its advantages described in [3] when
compared to other methodologies. For dealing with the
distributed nature of services and applications in [2], this paper
introduces a novel testing framework with a special testing
architecture. The proposed testing architecture integrates a Test
Generation Environment.

In order to show the importance of this research work, the
following paper is structured into seven sections. After the
introduction, section II presents an overview about the concept
of service and application provisioning based on the P2P4M2M
framework. Section III illustrates related work on testing
approaches. Testing challenges and requirements are presented
in section IV. Section V gives an overview about the principles
of the proposed testing framework and describes the testing
architecture and its elements. Section VI shows the test
derivation and generation concept. At the end, section VII
concludes with an application example related to the testing
concept presented in this research.

II. P2P-BASED M2M APPLICATIONS

Reference [2] presents a concept of service and application
provision in M2M. A service, as well as an application, can be
realised by peers using technical or non-technical principles

Fig. 2. Generalised structure of P2P4M2M framework [2]

(i.e. it can be provided using technical devices, e.g. computers,
or by a human, e.g. personal assistance services). The services
are realised by one or more service components which form the
building blocks of services. The service components
themselves are realised via several software applications
executed on several execution environments. Peers are also
represented by technical devices or humans (if applicable
supported by technical devices) which are networked using
P2P mechanism. The M2M community described in [2] forms
a social network of peers where different sub communities are
also used to address different application fields, interests and
geographical locations. The networking enables the
participating peers to provide a service that can be consumed
by others [2].

Reference [4] introduces a Service Management
Framework (SMF) installed in the local households, consisting
of Service Delivery Platform (SDP) and Service Creation
Environment (SCE), and uses the concept of P2P networked
energy-community. The SCE brings the functionality to design
and configure value-added services graphically, according to
the personal needs of the users [4]. The SMF described in [4] is
also the main component for service and application
provisioning in M2M based on the P2P4M2M framework [2].

According to [5], the information exchange between the
peers for the service utilisation and the signalling to generate
the application is enabled by using various M2M
communication protocols (e.g., CoAP, HTTP, SIP, MQTT)
based on SUBSCRIBE/ NOTIFY principle. Fig. 2 shows a
generalised overview of the P2P4M2M framework mentioned
in [2].

III. RELATED WORK

To the author`s knowledge, there are no known studies
about automated testing and securing services and applications
within the P2P4M2M framework. Furthermore, only a very
limited amount of related work exists on functional testing of
P2P systems and M2M applications. In relation to the different
aspects of testing some relevant publications are presented later
in this paper.

It is crucial to define a suitable testing architecture for
testing different services and applications based on the
P2P4M2M framework. Our survey of the related literature

shows some centralised approaches for testing distributed
systems. Several publications [6-9] present testing architectures
based on a coordinator and testers with focus on testing P2P
functions and distributed systems. The coordinator inserts and
controls several testers which run on different logical nodes.
Also, the coordinator collects centrally information of the
distributed System under Test (SUT), derives the test verdicts,
observes and controls external and internal actions of SUT and
has a global view on distributed SUT. The testers execute the
test instructions received from the coordinator and control the
volatility of single peers. The problems of these approaches are
the single points of failure of the global tester and the low level
of usability in large scale systems as they do not scale up to
large numbers of peers (typical P2P system may have a high
number of peers). Another problem is the non-efficient
generation of test cases and the missing environment for test
generation. There are also decentralised approaches for testing
distributed systems such as in [7] who introduces distributed
testers with the following functions: several operating tester
components which process a global test case together. The
behaviour of the testers is controlled by a test coordination
procedure. Reference [10] also proposes a distributed test
architecture without the use of a central coordinator and
ensuring the coordination between the testers by introducing a
distribution procedure of test sequences among the testers. The
disadvantage of this approach is that the testers do not have a
global view on the SUT, so they must synchronise each other
by means of a test coordination which leads to a high effort for
synchronisation events for coordination between the testers.
Also, an effective controllability of the participating testing
peers is missing due to the lack of a central authority.

The aim of model-based testing (MBT) based on [11] is
the creation of one or more formal models from which test
cases can automatically be generated and executed according to
predetermined test criteria. According to [11], model-based
testing includes at least one of the following aspects: test
modelling and test generation from models. There are different
models for the purpose of model-based testing introduced in
literature such as: Statecharts [12], Finite State Machines
(FSM) [13], Petri nets [14] and UML [15]. Reference [16]
presents an automated functional testing approach which
follows a model-based strategy using Statecharts notation for
modelling the potential behaviour of a service. The approach
used in [16] leads to an enormous amount of generated test
cases and is also not applicable for distributed systems such as
the P2P4M2M framework. A model-based and test-driven
testing methodology in the IoT domain is introduced by [17]
but the main focus is the semantical description of IoT services
which are running centralised on an application server and this
approach lacks the possibility for deriving tests for applications
composed by fully distributed services.

IV. CHALLENGES AND REQUIREMENTS FOR TESTING

APPLICATIONS IN P2P4M2M

According to [18], testing is defined as “the process of
analysing a software item to detect the differences between
existing and required conditions and to evaluate the features of
the software items”. The aim of this research is the testing of
services and applications based on the P2P4M2M framework.

The process of creating M2M applications based on [5] makes
functional testing very complex and can be described as
follows: The application creator creates and configures an
M2M application using his SCE. The M2M application
consists of several services which are part of an M2M
community. The services are described by their Service
Interface Description. The Service Interface Description
includes service ID, service functions, input, output and further
configuration parameters of a service. Services are provided by
different peers participating in a P2P network without the use
of a central authority. The creation of an application will
generate an SCXML (State Chart XML) description which
precisely describes the potential functionality the application
should deliver in a formal manner. In principle, such an
SCXML description includes the involved services, the
connection of services as well as conditions and definitions of
input/ output parameters.

A special testing framework is required for testing the
M2M application. First of all, the P2P4M2M framework is a
distributed system and based on [19] distributed systems are
“heterogeneous in terms of communication networks, operating
systems, hardware platforms and also the programming
language used to develop individual components”. Reference
[19] states that the size and complexity of distributed systems
is growing and the system should be able to run over a wide
variety of different platforms and access different kinds of
interfaces. Considering the distributed characteristics of the
P2P4M2M framework and the need for exchanging relevant
information for testing it is important to ensure collaboration
between the services, applications and test elements. The
decentralisation of the peers and also their volatility (nodes
leaving and entering suddenly) in the P2P-based M2M
application community has to be considered in the test
environment. Especially in the P2P4M2M concept, the
application creator could be a user who has no technical
background and who is not able to prepare the testing. Also,
based on [11] the application creator should not be the test
creator. If the application creator has already interpreted a
specification incorrectly during the development, he will also
misinterpret it for the test. For this reason and also for the
advantages of test automation [11] the testing needs to be
automated using a mechanism which utilises the information
provided by the application and the services. Another problem
is the procedure for defining test cases. Testing distributed
services and applications in M2M networks requires different
methods for deriving and generating test suites and for running
the test. Reference [20] presents several problems for testing
distributed systems including the test data generation and the
specific execution behaviour. The testing framework must have
the ability to derive test cases from the information gathered by
the application and the distributed services. Based on the
characteristics of the P2P4M2M framework presented in [5]
the execution of the test cases on the participating services and
the composed application should also be considered.
Furthermore, there are several security issues based on [21]
related to the P2P4M2M framework. Additionally, reference
[21] introduces the concept of trust for P2P-based M2M
applications and the integration of a Trust Management System
(TMS) within the testing framework. Due to these different

challenges, the general requirements for the testing framework
can be summarised as follows:

 Collaboration – It is necessary to have collaboration
between the application creator, the test environment and
the peers, which are part of the application, and are
providing or consuming services.

 Deployment – The testing framework needs to have the
ability to deal with high number of peers and also the
volatility of nodes in P2P network should be considered by
the framework.

 Test Automation – Based on the complexity of the
P2P4M2M framework the whole testing process needs to
be automated considering the distributed architecture of
the system.

 Test Derivation – Test suites need to be derived and
generated from the gathered information about the
composed M2M application and the participating services.

 Test Execution – The generated test cases need to be
executed on different services in a timely manner. Also the
test cases for the whole application should be executed
after its creation.

 Verification – The testing process should deliver results
about the functionality of the considered SUT, which
could be a service or an application.

 Tool support – The framework should provide tools to
generate, execute and manage tests.

 P2P and M2M capability – The framework should
consider the included P2P mechanism and its
characteristics within the application framework. M2M
communication protocols should also be supported.

 Trust Management System support – The framework
should provide the possibility to integrate a trust
management system in its architecture.

V. PRINCIPLES OF PROPOSED TESTING FRAMEWORK

The challenges of testing (see section IV) and the
complexity of the P2P-based M2M application framework
leads to the necessity to define a suitable testing framework.
The focus within this research work is the functional testing of
services/ applications based on the P2P4M2M framework.
Functional testing is the process of verifying the functions in a
system to assure that they meet the specified requirement.
Reference [22] defines that “every software system can be seen
as a black box, where a tester selects valid and invalid inputs
and determines the correct output” and in functional testing “a
tester does not need to know the internals of the SUT as the
focus is to evaluate the functional correctness of a given
system, independently of its internal implementation”.

Three black-box testing scenarios can be derived based on
the application creation process described in [5]. The first
scenario deals with the testing of a service after it enters the
M2M community. This happens to ensure the availability of
the correctly working services in the community and should be
done after predefined time intervals. The second and third

testing scenarios will happen after the application creator
builds an application using several services participating in the
M2M community. The composed and created application
needs to be tested based on its configuration and according to
the special conditions of each participating service in the
composition. An example for testing an application is provided
later in this research paper. The services, which are part of the
composed application, need to be tested according to their
special configurations within the application.

Based on the related work [6-10] [15-16], the requirements
for the testing framework for P2P-based M2M applications and
the need for a load balanced and effective testing mechanism, a
test architecture with a combination of a global tester called
Test Master and distributed testers called Test Agents is
presented in this work. An additional test component for load
balancing is required due to the increasing number of
participating peers and provided services in the P2P-based
M2M community and the inability of the Test Master to scale
up with the increasing number of distributed services.
Therefore, a test generation environment is included in the
testing framework which derives and generates test cases and
also interacts with the Test Master, the services and the
application creator. Fig. 3 shows the conceptual test
architecture consisting of a Test Master, Test Agents and Test
Generation Environment (TGE).

The TGE gets an SCXML description of a composed
application and also the service interface descriptions of each
participating service and generates test cases for this
application respectively each of the participating services.
Afterwards, the TGE will send the relevant test instructions to
the Test Master who is the coordinator of the overall testing
framework. The Test Master will send test instructions to the
Test Agents, who will afterwards execute the test cases on the
SUT. Systems under Tests are all services which are part of the
community and the composed application. Table I gives an
overview about the different functions of the test components.

Fig. 3. Conceptual Test Architecture of the P2P4M2M framework

TABLE I. TEST ELEMENTS OF THE TESTING FRAMEWORK

VI. PROPOSED TEST GENERATION ENVIRONMENT

As mentioned in the previous chapters, the behaviour of the
services and applications based on the P2P4M2M concept are
described by their SCXML descriptions. Each service and
application in the P2P4M2M framework is considered as a
system and the behaviour modelling using SCXML will build a
so-called system model. Reference [23] defines system models
as a tool for describing the composition and interaction of
components in the system. System models are useful for testing
because they provide general information about the
functionality of a system. Another aim of this research is to
generate a test model from the system model and the
information it provides. Then, this test model generates test
cases for executing them on the system. Furthermore, the
challenge of this publication is to develop a mechanism for
transforming the system model to a test model.

In this work the task of test derivation and generation is
carried out by the Test Generation Environment (TGE) which
must know how the different services work together. The TGE
must know the logic of the services/ application in order to
derive and generate tests accordingly. This logic has to be
derived from the SCXML descriptions of the application and
the service interface descriptions of the participating services.
The workflow of the service and application creation and
testing is shown in Fig. 3. The special challenges for deriving
test cases in the P2P-based M2M application framework are:
Different services; services providing different functions;
application built by the composition of different services;
created SCXML description of an application that does not
provides the full information about the full functionality of
each service; filtering the relevant information from the
SCXML descriptions.

Test Element Functionality

Test Master

 controlling test processes
 managing test processes
 receiving test instructions from Test Derivation

Environment
 receiving Test Results from the Test Agent
 evaluating Test Results
 providing the Application Creator with

information about the test results
 providing the service providers with information

about the test results
 sending test instructions to the test agents
 interacting with all test elements
 maintaining list of test agents

Test
Generation

Environment

 receiving Service Interface Descriptions from the
services

 receiving SCXML Descriptions from the
Application Creator

 deriving and generating test cases
 sending test instructions to the Test Master

Test Agent

 receiving instructions from the Test Master
 executing test instructions on SUT
 sending test results to the Test Master
 exchanging test related information with the

Test Master

Reference [24] presents a Test Creation Framework which
allows test developers to automatically create and execute test
cases. There are some major drawbacks in the framework
presented in [24]. First, there is no possibility for filtering the
relevant information of the distributed system models and
building a relevant test model. Second, [24] introduces the role
of the test developer whereas the testing framework presented
in this research aims to be fully automated without the use of a
test developer. In order to fill the gaps of [24] and to fulfil our
requirements of test derivation and test automation, we
integrate the special component of the Specification Collector
which will be explained later. With respect to the above
described challenges, a novel Test Generation Environment
concept is introduced and shown in Fig. 4. This environment
consists of four different components which is based on model
based testing (MBT) and is explained below.

 Specification Collector Unit (SCU) – Collects the
information received from the application creator and the
services participating in the composed application. After
receiving this information the SCU has to filter the relevant
information and to build a so called Test Application
Description (TAD) which afterwards will be sent to the
Behaviour Model Generator.

 Behaviour Model Generation Unit (BMGU) – From the
received TAD the BMGU has to generate extended
behaviour models based on behaviour notation languages
such as: EFSM, Statechart, BPEL, UML etc. The models
describe the behaviour of the composited application and
each of the participating services.

 Test Suite Derivation Unit (TSDU) – After getting the
behaviour models the TSDU will derive possible test cases
respectively test suits for the created P2P-based M2M
application and will send the derived abstract tests suits to
the Test Suite Generation Unit.

 Test Suite Generation Unit (TSGU) – Depending on the
test execution environment the TSGU will generate from
the received abstract tests suits the executable test suits and
will forward these information to the Test Master.

Test Generation Environment
Specification

Collection Unit

Behaviour Model
Generation Unit

Test Suite Derivation
Unit

Test Suite
Generation Unit

Composed Application
Test Description

Behaviour models

Abstract Test Suite

Executable Test
Suite

Application

Services

SCXML Applicaton
Description

Service Interface
Descriptions

Test Master
Fig. 4. Detailed view of the Test Generation Environment

VII. APPLICATION EXAMPLE

 To prove the concept of testing P2P-based M2M
applications provided by the P2P4M2M framework, an
example application is introduced in the following. The major
idea behind the application called “Temperature Surveillance”
is to allow consumers to continuously get informed about the
temperature in certain rooms, e.g. via their smartphones. The
application requires the involvement of three different services
which exchange information by using SIP SUBSCRIBE and
NOTIFY messages. Service 1 delivers the temperature values
by accessing diverse temperature sensors in the environment
whereas service 2 evaluates the received values from service 1
and determines the consumers (via SIP URIs) who should
receive the values. The role of service 3 is to forward the
received temperature values via SIP instant messages to the
consumers. Based on this example, the proposed Test
Generation Environment generates a test execution architecture
composed of one so-called Master Test Component (MTC) and
several Parallel Test Components (PTC). Both the terms MTC
and PTC are derived from typical Testing and Test Control
Notation 3 (TTCN-3)-based environments [25]. The TTCN-3
concept also allows to define a distributed test execution
environment where all test components (MTC, PTC) are
running on different machines. MTC and PTCs are the
corresponding Test Master and Test Agents presented in
section V. This aspect is very relevant for testing distributed
applications running in the P2P4M2M framework. Specifically
for the “Temperature Surveillance” application, four PTCs are
used (see Fig. 5). The number of PTCs depends on the
functionality provided by the services that are involved to
provide the application functionality. For both service 1 and 2,
it is sufficient to let only one PTC (PTC 1 for service 1, PTC 2
for service 2) participate in the test execution. For service 3, a
random number of PTCs is required as the number of
consumers is depending on the number of registered SIP URIs.
An example test case verifying the main functionality of the
application would be executed as follows: First, PTC 1
subscribes service 1 to continuously receive temperature values
via NOTIFY messages. As soon as PTC 1 receives new values,
they are forwarded to all the other PTCs via the MTC to
compare them later in the test execution. Second, PTC 2
subscribes to service 2 to receive the temperature values and
the SIP URIs of the consumers. PTC 2 will also verify if the
temperature values received by PTC 1 match with the ones
PTC 2 received from service 2. If the values are not equal, the
test case will be directly declared as “fail”. If the values are
equal, the test case execution continues with service 2
forwarding the SIP URIs and the values to PTC 3 and PTC 4.
Both PTCs will then realise a registration process with the SIP
URIs to be able to receive the SIP instant messages with the
temperature values by service 3. As soon as PTC 3 and PTC 4
received the messages, the values included will also be
compared with the values received from PTC 2. After the test
case execution is finished, an overall verdict (such as “pass”,
“fail” or “inconclusive”) is assigned. Based on the executable
test suite (see Figure 4) for this specific application example,
further test cases can then be executed using the identical test
architecture.

Fig. 5. Testing the M2M Application “Temperature Surveillance”

VIII. CONCLUSION

This publication presents a novel concept for automated
functional testing of P2P-based services and applications in
M2M. The presented concept aims to deal with the complexity
of testing applications which are composed by several
heterogenic services with different service functionalities and
configuration parameters. The missing role of a test creator in
the P2P-based M2M application framework and the automation
of test case generation using the integration of the Test
Generation Environment are solved by the presented testing
framework.

The next step is to develop a Test Application Description
which includes relevant information for automated testing
derived from the composed application and the participating
services in the composition based on the P2P4M2M
framework. Furthermore, the possibilities to distribute the test
elements using P2P mechanism and to build a P2P test
community are part of future steps which have to be evaluated.
We are simultaneously working on a concept of integrating a
trust management system inside the presented testing
framework for ensuring security and trustworthiness in P2P-
based M2M applications using trust.

ACKNOWLEDGEMENTS

The research project P2P4M2M providing the basis for this
publication was partially funded by the Federal Ministry of
Education and Research (BMBF) of the Federal Republic of
Germany under grant number 03FH022IX5. The authors of this
publication are in charge of its content.

REFERENCES
[1] ETSI TR 102 725, V1.1.1, 2013-06: Technical Report, “Machine-to-

Machine communications (M2M); Definitions”, ETSI TISPAN

[2] M. Steinheimer, U. Trick, W. Fuhrmann and B. Ghita, “P2P-based
community concept for M2M Applications,” Proc. of Second
International Conference on Future Generation Communication
Technologies (FGCT 2013), London, UK, December 2013

[3] P. Wacht, “Framework for Automated Functional Tests within Value-
Added Service Environments”, PhD Thesis, School of Computing and
Mathematics, University of Plymouth, UK, December 2015

[4] M. Steinheimer, U. Trick, P. Ruhrig, R. Tönjes, M. Fischer and D.
Hölker, „SIP-basierte P2P-Vernetzung in einer Energie-Community“,
ITG-Fachbericht 242: Mobilkommunikation, pp. 64, Mai 2013

[5] M. Steinheimer, U. Trick, B. Ghita and W. Fuhrmann, “Decentralised
System Architecture for autonomous and cooperative M2M Application

Service Provision”, International Conference on Smart Grid and Smart
Cities (ICSGSC), in press, 2017

[6] E. Almeida, G. Sunye, Y. Traon and P. Valduriez, “A framework for
testing peer-to-peer systems,” Dans 19th International Symposium on
Software Reliability Engineering (ISSRE 2008), Redmond, Seattle,
USA, IEEE Computer Society, 2008

[7] A. Ulrich and H. Konig, “Architectures for testing distributed systems,”
Dans Proceedings of the IFIP TC6 12th International Workshop on
Testing Communicating Systems, pp. 93–108, Deventer, The
Netherlands. Kluwer, B.V., 1999

[8] P. Rosenkranz, M. Wählisch, E. Baccelli and L. Ortmann, “A
Distributed Test System Architecture for Open-source IoT Software,”
IoT-Sys´15 Proceedings of the 2015 Workshop on IoT challenges in
Mobile and Industrial Systems, pp. 43-48, ACM, New York. 2015

[9] C. Torens and L. Ebrecht, “RemoteTest: A Framework for Testing
Distributed Systems,” 2010 Fifth International Conference on Software
Engineering Advances (ICSEA 2010), pp. 441-446, Nice, France, 2010

[10] A. Khoumsi, “Testing distributed real time systems using a distributed
test architecture”, Sixth IEEE Symposium on Computers and
Communications, 2001

[11] M. Winter, T. Roßner, C. Brandes and H. Götz, “Basiswissen
modellbasierter Test”, dpunkt Verlag Heidelberg, Germany, ISBN: 978-
3-86490-297-0, 2016

[12] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, 8(3):231–274, June 1987

[13] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling
Language user guide,” Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1999

[14] W. Reisig, “Petri Nets: An Introduction,” Springer-Verlag New York,
Inc., New York, NY, USA, 1985

[15] The Unified Modeling Language 2.0: Superstructure FTF convenience
document (ptc/04-10-02). Object Management Group, 2004. Available
at:www.uml.org

[16] P. Wacht, U. Trick, W. Fuhrmann and B. Ghita, “Efficient Test Case
Derivation from Statecharts-Based Models”, Proceedings of the
Eleventh International Network Conference, Frankfurt, Germany, 2016

[17] D. Kuemper, E. Reetz and R. Tönjes, “Test Derivation for Semantically
Described IoT Services”, Future Network and Mobile Summit
(FutureNetworkSummit), pp. 1-10, IEEE, 2013

[18] IEEE Std 610.12, (1990), IEEE Standard, “IEEE Standard Glossary of
Software Engineering Terminology”, IEEE

[19] A. Saifan and J. Dingel, “Model-based testing of distributed systems,”
Technichal report, vol. 548, 2008

[20] S. Ghosh and A. Mathur, “Issues in testing distributed component-based
systems,” In Proceedings of the First International Conference on
Softaware Engineering Workshop on Testing Distributed Component-
Based Systems, Los Angeles, CA, May 1999

[21] B. Shala, P. Wacht, U. Trick, A. Lehmann, B. Ghita and S. Shiaeles,
“Ensuring Trustworthiness for P2P-based M2M applications,” 7th
International Conference on Internet Technologies & Applications
(ITA), in press, 2017

[22] M. Pezzè and M. Young, “Software testen und analysieren” (translated
title: “Testing and analysing software”), Oldenbourg, Munich, Germany,
ISBN: 3-486-58521-6. 2009

[23] I. Schieferdecker, “Modellbasiertes Testen,” OBJEKTspektrum 3/07, pp.
39-45. 2007

[24] P. Wacht, U. Trick, W. Fuhrmann and B. Ghita, “A Novel Test Creation
Framework for Value-Added Services,” 24th International Conference
on Software, Telecommunications and Computer Networks (SoftCOM),
Split, 2016

[25] EG 201 873-1: Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part1: TTCN-3 Core
Language. ETSI, September 2008

