
Automated Functional Testing of P2P-based M2M
Applications

Besfort Shala, Patrick Wacht, Ulrich Trick, Armin
Lehmann

Research Group for Telecommunication Networks
Frankfurt University of Applied Sciences

Frankfurt/M., Germany
shala@e-technik.org

 Besfort Shala, Bogdan Ghita, Stavros Shiaeles
Centre for Security

Communications and Network Research
University of Plymouth

Plymouth, UK

Abstract—This publication proposes a novel testing
framework for the functional verification of decentralised
services and applications in Peer-to-Peer (P2P)-connected
Machine-to-Machine (M2M) networks. Besides presented
challenges and requirements for testing within distributed
environments, a concept for deriving and generating test cases
based on a Test Description Language (TDL)-based approach is
described and mapped to M2M applications.

Keywords— M2M; P2P; Service and Application; Functional
automated testing

I. INTRODUCTION

Building surveillance, energy management, traffic
management, electro mobility and ambient assisted living are
only a few Machine-to-Machine (M2M) application fields
which are present nowadays. According to the European
Telecommunications Standards Institute (ETSI), M2M
applications are defined as “applications that run the service
logic and use Service Capabilities accessible via open
interfaces” [1]. Previous papers have defined requirements and
concepts to realise service and application provision in M2M.
The work and investigations of this research paper are based on
the P2P-based M2M application (P2P4M2M) framework
which offers new possibilities for applications, realised by
several peers, independent of central instances or corporations
[2].

Service 1

Peer A

SMF

Service 2

Peer B

SMF

Peer N
SMF

Peer D

SMF

Service 3

Peer C

SMF

SIP-INFO

M2M community

Mobile Peers

Service 1

Peer A

SMF

Service 2

Peer B

SMF

Peer N
SMF

Peer D

SMF

Service 3

Peer C

SMF

SIP-INFO

M2M community

Mobile Peers

Peer E
SMF

SCE SDP

Fig. 1. P2P connected peers within a M2M community [2]

Reference [2] defines a framework that realises service and
application provisioning using P2P networking in M2M
application field. An application consists of one or more
underlying services that are combined (i.e. aggregated or
composed). Also, the use of the community concept described
in [2] helps to avoid legal restrictions, adjust different interests
among the peers and ensure optimisation and forming P2P
networks. Fig. 1 shows the structure of the P2P connected
peers within an M2M community based on [2]. Besides many
advantages of the service provisioning concept, [2] does not
consider approaches for testing P2P-based services/
applications in M2M. Therefore, a novel testing framework is
required to enable testing of heterogeneous and decentralised
services and applications in the P2P4M2M framework.

The aim of this paper is to illustrate the challenges and
requirements of testing services and applications in P2P4M2M
and to define a novel concept for functional automated testing.
Through a functional testing approach, it can be verified that
services and applications are running properly and according to
the user’s requirements. For dealing with the distributed nature
of services and applications in [2], this paper introduces a novel
testing framework with a special testing architecture. The
proposed testing architecture integrates a Test Generation
Environment.

To show the importance of this research work, the
following paper is structured into seven sections. After the
introduction, section II presents an overview about the concept
of service and application provisioning based on the P2P4M2M
framework. Section III illustrates related work on testing
approaches. Testing challenges and requirements are presented
in section IV. Section V gives an overview about the principles
of the proposed testing framework and describes the testing
architecture and its elements. Section VI shows the test
derivation and generation concept. At the end, section VII
concludes with an application example related to the testing
concept presented in this research.

II. P2P-BASED M2M APPLICATIONS

Reference [2] presents a concept of service and application
provision in M2M. A service, as well as an application, can be
realised by peers using technical or non-technical principles

Fig. 2. Generalised structure of P2P4M2M framework [2]

(i.e. it can be provided using technical devices, e.g. computers,
or by a human, e.g. personal assistance services). The services
are realised by one or more service components which form the
building blocks of services. The service components
themselves are realised via several software applications
executed on several execution environments. Peers are also
represented by technical devices or humans (if applicable
supported by technical devices) which are networked using
P2P mechanism. The M2M community described in [2] forms
a social network of peers where different sub communities are
also used to address different application fields, interests and
geographical locations. The networking enables the
participating peers to provide a service that can be consumed
by others [2].

Reference [3] introduces a Service Management
Framework (SMF) installed in the local households, consisting
of Service Delivery Platform (SDP) and Service Creation
Environment (SCE), and uses the concept of P2P networked
energy-community. The SCE brings the functionality to design
and configure value-added services graphically, according to
the personal needs of the users [3]. The SMF described in [3] is
also the main component for service and application
provisioning in M2M based on the P2P4M2M framework [2].

According to [4], the information exchange between the
peers for the service utilisation and the signalling to generate
the application is enabled by using various M2M
communication protocols (e.g., CoAP, HTTP, SIP, MQTT)
based on SUBSCRIBE/ NOTIFY principle. Fig. 2 shows a
generalised overview of the P2P4M2M framework mentioned
in [2].

III. RELATED WORK

To the author`s knowledge, there are no known studies
about automated testing and securing services and applications
within the P2P4M2M framework. Furthermore, only a very
limited amount of related work exists on functional testing of
P2P systems and M2M applications.

It is crucial to define a suitable testing architecture for
testing different services and applications based on the
P2P4M2M framework. Our survey of the related literature
shows some centralised approaches for testing distributed
systems. Several publications [5-8] present testing architectures

based on a coordinator and testers with focus on testing P2P
functions and distributed systems. The coordinator inserts and
controls several testers which run on different logical nodes.
Also, the coordinator collects centrally information of the
distributed System under Test (SUT), derives the test verdicts,
observes and controls external and internal actions of SUT and
has a global view on distributed SUT. The testers execute the
test instructions received from the coordinator and control the
volatility of single peers. The problems of these approaches are
the single points of failure of the global tester and the low level
of usability in large scale systems as they do not scale up to
large numbers of peers (typical P2P system may have a high
number of peers). Another problem is the non-efficient
generation of test cases and the missing environment for test
generation. There are also decentralised approaches for testing
distributed systems such as in [6] who introduces distributed
testers with the following functions: several operating tester
components which process a global test case together. The
behaviour of the testers is controlled by a test coordination
procedure. Reference [9] also proposes a distributed test
architecture without the use of a central coordinator and
ensuring the coordination between the testers by introducing a
distribution procedure of test sequences among the testers. The
disadvantage of this approach is that the testers do not have a
global view on the SUT, so they must synchronise each other
by means of a test coordination which leads to a high effort for
synchronisation events for coordination between the testers.

Besides the fundamentals of the test architecture, the
derivation of test cases needs to be analysed. In literature,
many model-based approaches are identified, e.g. in [10]. Here,
one or more formal models are created from which test cases
can be automatically generated and executed according to
predetermined test criteria. There are different notations which
can be applied to model-based testing such as Statecharts [11],
Finite State Machines (FSM) [12], Petri nets [13] and UML
[14]. Reference [15] presents an automated functional testing
approach based on Statecharts notation for modelling the
potential behaviour of a service. However, the approach leads
to an enormous amount of generated test cases and is not
applicable for distributed systems such as the P2P4M2M
framework. A promising concept has been developed by ETSI,
the Test Description Language (TDL) [16]. The language TDL
is scenario-based and allows the design, documentation and
representation of formal test descriptions. It already includes
the necessary components for automated test design such as
test data, test configuration, test behaviour and test objectives.

IV. CHALLENGES AND REQUIREMENTS FOR TESTING

APPLICATIONS IN P2P4M2M

According to [17], testing is defined as “the process of
analysing a software item to detect the differences between
existing and required conditions and to evaluate the features of
the software items”. The aim of this research is the testing of
services and applications based on the P2P4M2M framework.
The process of creating M2M applications based on [4] makes
functional testing very complex and can be described as
follows: The application creator creates and configures an
M2M application using his SCE. The M2M application
consists of several services which are part of an M2M

community. The services are described by their Service
Interface Description (SID). The SID includes service ID,
service functions, input, output and further configuration
parameters of a service. Services are provided by different
peers participating in a P2P network without the use of a
central authority. The creation of an application will generate
an SCXML (State Chart XML) description which precisely
describes the potential functionality the application should
deliver in a formal manner. In principle, such an SCXML
description includes the involved services, the connection of
services as well as conditions and definitions of input/ output
parameters.

A special testing framework is required for testing the
M2M application. Firstly, the P2P4M2M framework is a
distributed system and based on [18] distributed systems are
“heterogeneous in terms of communication networks, operating
systems, hardware platforms and also the programming
language used to develop individual components”. Reference
[18] states that the size and complexity of distributed systems
is growing and the system should be able to run over a wide
variety of different platforms and access different kinds of
interfaces. Considering the distributed characteristics of the
P2P4M2M framework and the need for exchanging relevant
information for testing it is important to ensure collaboration
between the services, applications and test elements. The
decentralisation of the peers and their volatility (nodes leaving
and entering suddenly) in the P2P-based M2M application
community should be considered in the test environment.
Especially in the P2P4M2M concept, the application creator
could be a user who has no technical background and who is
not able to prepare the testing. Also, based on [10] the
application creator should not be the test creator. If the
application creator has already interpreted a specification
incorrectly during the development, he will also misinterpret it
for the test. For this reason and for the advantages of test
automation [10] the testing needs to be automated using a
mechanism which utilises the information provided by the
application and the services. Another problem is the procedure
for defining test cases. Testing distributed services and
applications in M2M networks requires different methods for
deriving and generating test suites and for running the test.
Reference [19] presents several problems for testing distributed
systems including the test data generation and the specific
execution behaviour. The testing framework must have the
ability to derive test cases from the information gathered by the
application and the distributed services. Based on the
characteristics of the P2P4M2M framework presented in [4]
the execution of the test cases on the participating services and
the composed application should also be considered. Due to
these different challenges, the general requirements for the
testing framework can be summarised as follows:

 Collaboration – It is necessary to have collaboration
between the application creator, the test environment and
the peers, which are part of the application, and are
providing or consuming services.

 Deployment – The testing framework needs to have the
ability to deal with high number of peers and also the
volatility of nodes in P2P network should be considered by
the framework.

 Test Automation – Based on the complexity of the
P2P4M2M framework the whole testing process needs to
be automated considering the distributed architecture of
the system.

 Test Derivation – Test suites need to be derived and
generated from the gathered information about the
composed M2M application and the participating services.

 Test Execution – The generated test cases need to be
executed on different services in a timely manner. Also,
the test cases for the whole application should be executed
after its creation.

 Verification – The testing process should deliver results
about the functionality of the considered SUT, which
could be a service or an application.

 Tool support – The framework should provide tools to
generate, execute and manage tests.

 P2P and M2M capability – The framework should
consider the included P2P mechanism and its
characteristics within the application framework. M2M
communication protocols should also be supported.

V. PROPOSED TESTING FRAMEWORK

The challenges of testing (see section IV) and the
complexity of the P2P-based M2M application framework
leads to the necessity to define a suitable testing framework.
The focus within this research work is the functional testing of
services/ applications based on the P2P4M2M framework.
Functional testing is the process of verifying the functions in a
system to assure that they meet the specified requirement.
Reference [20] defines that “every software system can be seen
as a black box, where a tester selects valid and invalid inputs
and determines the correct output” and in functional testing “a
tester does not need to know the internals of the SUT as the
focus is to evaluate the functional correctness of a given
system, independently of its internal implementation”.

Two black-box testing scenarios can be derived based on
the application creation process described in [4]. The first
scenario deals with the testing of a service after it enters the
M2M community. This happens to ensure the availability of
the correctly working services in the community and should be
done after predefined time intervals. The second testing
scenario will happen after the application creator builds an
application using several services participating in the M2M
community. The composed and created application needs to be
tested based on its configuration and according to the special
conditions of each participating service in the composition. An
example for testing an application is provided later in this
research paper. The services, which are part of the composed
application, need to be tested according to their special
configurations within the application.

Based on the related work [5-9] [14-15], the requirements
for the testing framework for P2P-based M2M applications and
the need for a load balanced and effective testing mechanism, a
test architecture with a combination of a global tester called
Test Master and distributed testers called Test Agents is
presented in this work. Therefore, a test generation

environment is included in the testing framework which
derives and generates test cases and interacts with the Test
Master, the services and the application creator. Fig. 3 shows
the conceptual test architecture consisting of a Test Master,
Test Agents and Test Generation Environment (TGE).

In the approach, the TGE receives an SCXML description
of a composed application from the Service Creation
Environment (SCE). The major role of the TGE is to derive
and generate adequate test cases and to transfer these as test
instructions to the Test Master. In the further step, the Test
Master controls and manages the test process based on the test
instructions. Accordingly, the Test Master sends test
instructions to the Test Agents which will afterwards execute
the test cases on composed services (the application)
representing the System Under Test (SUT). After the test
process terminates, the participating Test Agents send their test
results (including the test verdicts) to the Test Master which
will generate an overall verdict for the application.

Fig. 3. Conceptual Test Architecture of the P2P4M2M framework

To establish the described test process, adequate test cases
should be derived by the TGE. As the test cases prove the
functionality of the composed services, they must be derived
from a system model. Reference [21] defines system models as
a tool for describing the composition and interaction of
components in the system. System models are useful for testing
because they provide general information about the
functionality of a system. In this approach, an SCXML
application description and the Service Interface Descriptions
(SID) of the participating services serve as system model or
rather specification notations. Both notations are machine-
readable and can therefore be operated by the TGE.

As illustrated in the test process, the SCXML application
description will be automatically sent to the TGE as soon as a
new application has been created within the SCE. Principally,
the application can be provided by all participating peers that
provide the single services which taking part in the application.
Therefore, the TGE first needs to detect all the potential
combinations of peers to provide the application (see Fig. 4). In
the P2P4M2M framework, each single service provided by a
peer is determined by a unique identifier. As soon as a service
is part of an application, its unique identifier needs to be

included as attribute of a selected <state> element within the
SCXML application description.

SCXML application
description

Identify
services Service list

Identify
peersPeer list

Identify
combinations

Combinations list

act Detect
combinations

Fig. 4. Activity “Detect combinations”

After the TGE identified all collaborating services
(“Service list”), it needs to figure out which peers are currently
providing the services. Finally, all possible combinations of
peers providing the services are generated and output of the
activity “Detect combinations”.

In a further step, the SIDs of the participating peers for their
providing services becomes relevant. The TGE requests the
SIDs from the peers and analyses them. One part of the SID is
the test configuration which has been derived from the concept
of the TDL-based test configuration. It consists of so-called
tester and SUT components as well as their interconnections
represented as connections (see Fig. 5).

Test Configuration

Tester
Server: Node

SUT
Client: Nodesocket socket

Node
Variable
temperature: Float

socket: Data

Fig. 5. Test configuration as part of example SID

The illustration shows a test configuration with one SUT
component acting as client and one tester component acting as
server. Both components are connected via their sockets and it
is also specified which data (here a temperature value) is
exchanged between the components. This example test
configuration is simplified. In principal, the consumption of a
service can involve more than one tester components in diverse
roles. The test configuration is required to schedule the roles of
the Test Agents in the conceptual test architecture (see Fig. 3)
during test execution. A Test Agent can include one or more
tester components that interact with the SUT. A further positive
aspect of the TDL-based test configuration is the possibility to
directly derive Testing and Test Control Notation 3 (TTCN-3)-
based test configurations.

Besides the test configuration, further information is
required by the TGE to generate test suites. Fig. 6 shows the
activity “Generate test suites”. Based on the combinations list
which has been the output of the activity “Detect
combinations” (see Fig. 4), the TGE requests the SIDs and

loads the appropriate TDL-based test configurations (as shown
in Fig. 5).

SCXML application
description

Request
SIDs SID list

Derive TDL test
configurations

Test suites

Combinations list

Derive Test
Data

Enhance TDL
test behaviour

Build test
suites

act Generate test
suites

Fig. 6. Activity “Generate test suites”

In a next step, the test data is derived by means of the
SCXML application description. The description includes a
specific use case of the service and contains required
parameters being used. Based on the parameter values (e.g.
temperature values for sensors), varieties of threshold values
can be generated by the TGE. Afterwards, one of the most
important steps takes place, the determination of the test
behaviour. In principal, the TDL-based test behaviour defines
the expected behaviour of an SUT. It includes actions and
interactions and can specify behaviour in an alternative,
parallel, iterative and conditional way. There is also a
possibility to specify defaulting, interrupting and breaking. For
each service specified by an SID, the principal TDL-based test
behaviour is determined (see Fig. 7).

Tester
Server: Node

SUT
Client: Node

socket socket

SUBSCRIBE (SessionId := 1)

alternative

interrupt

default

NOTIFY (SessionId := 1)

PASS

NOTIFY (SessionId := ?)

FAIL

TICK

TOCK

ANY

INCONCLUSIVE

Fig. 7. TDL-based example test behaviour description

It is important that the test behaviour description includes
all tester components specified in the TDL-based test
configuration (see Fig. 5). In the illustrated example (see Fig.
7), alternative, interrupted and default behaviour is determined
in the specification. It starts with the tester component sending
a “SUBSCRIBE” message to the SUT component. Based on
this trigger, the tester component expects a response from the

SUT. In the alternative cases, a valid “NOTIFY” is expected
which leads to a “pass” verdict. Here, it is also possible that the
“NOTIFY” message includes invalid content. Maybe there is
wrong data included or the session identifiers mismatch. Such a
case would lead to a “fail” verdict of a test case. Besides the
alternative cases, interruptions can be specified. Such messages
have no effect on the functional purpose of the test case. So, no
verdict will be given due to interruption messages. Finally, the
default behaviour specifies messages from the SUT which do
not fit or have a different purpose. In this case, the verdict will
be “inconclusive”.

In the final step of the “Generate test suites” activity (see
Fig. 6), all TDL-based test behaviour specifications are
combined based on the participating services which are
involved in the application.

VI. APPLICATION EXAMPLE

 To prove the concept of testing P2P-based M2M
applications provided by the P2P4M2M framework, an
example application is introduced in the following. The major
idea behind the application called “Temperature Surveillance”
is to allow consumers to continuously get informed about the
temperature in certain rooms, e.g. via their smartphones. The
application requires the involvement of three different services
which exchange information by using SIP SUBSCRIBE and
NOTIFY messages. Service 1 delivers the temperature values
by accessing diverse temperature sensors in the environment
whereas service 2 evaluates the received values from service 1
and determines the consumers (via SIP URIs) who should
receive the values. The role of service 3 is to forward the
received temperature values via SIP instant messages to the
consumers. Based on this example, the proposed TGE
generates a test execution architecture composed of one so-
called Master Test Component (MTC) and several Parallel Test
Components (PTC). Both the terms MTC and PTC are derived
from typical TTCN-3-based environments [22]. The TTCN-3
concept also allows to define a distributed test execution
environment where all test components are running on different
machines. MTC and PTCs are the corresponding Test Master
and Test Agents presented in section V. This aspect is very
relevant for testing distributed applications running in the
P2P4M2M framework. Especially for the “Temperature
Surveillance” application, four PTCs are used (see Fig. 8). The
number of PTCs depends on the TDL-based test configurations
included in the SIDs of the services that are involved to provide
the application functionality. For both services 1 and 2, it is
sufficient to let only one PTC (PTC 1 for service 1, PTC 2 for
service 2) participate in the test execution. For service 3, a
random number of PTCs is required as the number of
consumers is depending on the number of registered SIP URIs.
An example test case verifying the main functionality of the
application would be executed as follows: First, PTC 1
subscribes service 1 to continuously receive temperature values
via NOTIFY messages. As soon as PTC 1 receives new values,
they are forwarded to all the other PTCs via the MTC to
compare them later in the test execution. Second, PTC 2
subscribes to service 2 to receive the temperature values and
the SIP URIs of the consumers. PTC 2 will also verify if the
temperature values received by PTC 1 match with the ones

PTC 2 received from service 2. If the values are not equal, the
test case will be directly declared as “fail”. If the values are
equal, the test case execution continues with service 2
forwarding the SIP URIs and the values to PTC 3 and PTC 4.
Both PTCs will then realise a registration process with the SIP
URIs to be able to receive the SIP instant messages with the
temperature values by service 3. As soon as PTC 3 and PTC 4
received the messages, the values included will also be
compared with the values received from PTC 2. After the test
case execution is finished, an overall verdict (such as “pass”,
“fail” or “inconclusive”) is assigned.

Fig. 8. Testing the M2M Application “Temperature Surveillance”

VII. CONCLUSION

This publication presents a novel concept for automated
functional testing of P2P-based services and applications in
M2M. It considers the volatility of peers providing diverse
services and deals with the complexity of M2M applications
which are composed of several heterogenic services. By means
of TDL concepts in the approach, tester components can be
identified, test data can be derived as well as reusable test
behaviours for services.

In a next step, the TDL-based test behaviour will be
analysed in terms of similarity and reusability. Furthermore, it
needs to be analysed how tester components between services
can be merged. We are simultaneously working on a concept of
integrating a trust management system inside the presented
testing framework for ensuring security and trustworthiness in
P2P-based M2M applications using trust.

ACKNOWLEDGEMENTS

The research project P2P4M2M providing the basis for this
publication was partially funded by the Federal Ministry of
Education and Research (BMBF) of the Federal Republic of
Germany under grant number 03FH022IX5. The authors of this
publication are in charge of its content.

REFERENCES
[1] ETSI TR 102 725, V1.1.1, 2013-06: Technical Report, “Machine-to-

Machine communications (M2M); Definitions”, ETSI TISPAN

[2] M. Steinheimer, U. Trick, W. Fuhrmann and B. Ghita, “P2P-based
community concept for M2M Applications,” Proc. of Second
International Conference on Future Generation Communication
Technologies (FGCT 2013), London, UK, December 2013

[3] M. Steinheimer, U. Trick, P. Ruhrig, R. Tönjes, M. Fischer and D.
Hölker, „SIP-basierte P2P-Vernetzung in einer Energie-Community“,
ITG-Fachbericht 242: Mobilkommunikation, pp. 64, Mai 2013

[4] M. Steinheimer, U. Trick, B. Ghita and W.Fuhrmann, “Decentralised
System Architecture for autonomous and cooperative M2M Application
Service Provision”, International Conference on Smart Grid and Smart
Cities (ICSGSC), in press, 2017

[5] E. Almeida, G. Sunye, Y. Traon and P. Valduriez, “A framework for
testing peer-to-peer systems,” Dans 19th International Symposium on
Software Reliability Engineering (ISSRE 2008), Redmond, Seattle,
USA, IEEE Computer Society, 2008

[6] A. Ulrich and H. Konig, “Architectures for testing distributed systems,”
Dans Proceedings of the IFIP TC6 12th International Workshop on
Testing Communicating Systems, pp. 93–108, Deventer, The
Netherlands. Kluwer, B.V., 1999

[7] P. Rosenkranz, M. Wählisch, E. Baccelli and L. Ortmann, “A
Distributed Test System Architecture for Open-source IoT Software,”
IoT-Sys´15 Proceedings of the 2015 Workshop on IoT challenges in
Mobile and Industrial Systems, pp. 43-48, ACM, New York. 2015

[8] C. Torens and L. Ebrecht, “RemoteTest: A Framework for Testing
Distributed Systems,” 2010 Fifth International Conference on Software
Engineering Advances (ICSEA 2010), pp. 441-446, Nice, France, 2010

[9] A. Khoumsi, “Testing distributed real time systems using a distributed
test architecture”, Sixth IEEE Symposium on Computers and
Communications, 2001

[10] M. Winter, T. Roßner, C. Brandes and H. Götz, “Basiswissen
modellbasierter Test”, dpunkt Verlag Heidelberg, Germany, ISBN: 978-
3-86490-297-0, 2016

[11] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, 8(3):231–274, June 1987

[12] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling
Language user guide,” Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1999

[13] W. Reisig, “Petri Nets: An Introduction,” Springer-Verlag New York,
Inc., New York, NY, USA, 1985

[14] The Unified Modeling Language 2.0: Superstructure FTF convenience
document (ptc/04-10-02). Object Management Group, 2004. Available
at:www.uml.org

[15] P. Wacht, U. Trick, W. Fuhrmann and B. Ghita, “Efficient Test Case
Derivation from Statecharts-Based Models”, Proceedings of the
Eleventh International Network Conference, Frankfurt, Germany, 2016

[16] ETSI ES 203 119-1, V1.3.1, 2016-09: “Methods for Testing and
Specification (MTS); The Test Description Language (TDL); Part 1:
Abstract Syntax and Associated Semantics”, ETSI

[17] IEEE Std 610.12, (1990), IEEE Standard, “IEEE Standard Glossary of
Software Engineering Terminology”, IEEE

[18] A. Saifan and J. Dingel, “Model-based testing of distributed systems,”
Technichal report, vol. 548, 2008

[19] S. Ghosh and A. Mathur, “Issues in testing distributed component-based
systems,” In Proceedings of the First International Conference on
Softaware Engineering Workshop on Testing Distributed Component-
Based Systems, Los Angeles, CA, May 1999

[20] M. Pezzè and M. Young, “Software testen und analysieren” (translated
title: “Testing and analysing software”), Oldenbourg, Munich, Germany,
ISBN: 3-486-58521-6. 2009

[21] I. Schieferdecker, “Modellbasiertes Testen,” OBJEKTspektrum 3/07, pp.
39-45. 2007

[22] EG 201 873-1: Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part1: TTCN-3 Core
Language. ETSI, September 2008

