
M2M Application Service Provision: An autonomous and 

decentralised Approach 
 

Michael Steinheimer1,3, Ulrich Trick1, Woldemar Fuhrmann2, Bogdan Ghita3, and Gregor Frick1  
1 Research Group for Telecommunication Networks, Frankfurt University of Applied Sciences, Frankfurt/M., Germany 

2 Department for Computer Science, University of Applied Sciences Darmstadt, Darmstadt, Germany 
3 Centre for Security, Communications and Network Research, University of Plymouth, Plymouth, UK 

Email: {steinheimer, trick, frick}@e-technik.org; woldemar.fuhrmann@h-da.de; bogdan.ghita@plymouth.ac.uk 

 

 
Abstract— This publication presents a novel concept for 

autonomous and decentralised M2M application service 

provision. The functional architecture of the approach is 

introduced as well as a detailed description of the system 

structure and process for application creation. Furthermore, this 

publication describes details about the proposed process for 

decentralised M2M application service management and formal 

description of M2M application services as well as independent 

validation of M2M application service configurations. Finally, 

the prototype M2M system realising the proposed concept is 

introduced and several scenarios are evaluated.  
 
Index Terms— M2M application service, P2P, service 

provision 

I. INTRODUCTION 

Devices are becoming more and more intelligent (i.e. 

they include complex functionality for monitoring and 

control). Additionally the devices receive the 

functionality for communication (this enables remote 

monitoring and controlling of devices). Because of the 

increasing number of intelligent devices, which support 

forming of intelligent environments, many new 

application fields can be established (e.g. as presented in 

[1] smart building, electro mobility, smart city, energy 

optimisation etc.). Especially the end user domain is an 

application field with powerful potential, however not 

addressable by external service providers. 

Machine-to-Machine Communications (M2M) systems 

realise the integration of such intelligent devices by 

provision of specific M2M applications. Traditional 

M2M systems and the corresponding M2M application 

services have the focus to support specific business 

processes. Traditional M2M applications provide their 

functionality as a service for users (end users or 

companies). Currently existing concepts from 

standardisation and research to implement M2M 

application services provision focus on central 

approaches. Projects from research area are e.g. INOX 

Managed Service Platform [2], M2M Platform Project 

based on SOA [3], BOSP Business Operation Support 

                                                           
 

 

 
 

 
 

Platform [4], IMS enabled M2M Service Platform [5], e-

DSON [6]. Commercial M2M platforms implement acc. 

[7] mostly the oneM2M standard for M2M [8]. 

Disadvantages of the centralised approaches are e.g. that 

the user of the application is dependent of the platform 

provider as a central instance. Often M2M platforms 

provide their functionality only for specific application 

fields and are therefore less flexible. Centralised 

provision of platforms requires many resources (costs for 

operation, maintenance, availability, application 

development). End users often have no possibility to 

define applications themselves (since the creation of 

applications requires expert knowledge or the end user 

does not have access to the platform) or the devices 

present in user's personal environment cannot be 

connected to the M2M platforms. 

The personal environment of the end user described 

above is difficult to address by external service providers, 

since the activities (controlling and monitoring of M2M 

devices) carried out in this area would severely affect the 

end user or challenge data security. To antagonise this 

issue, it was proposed in [9] to integrate the end user. For 

this purpose, an approach was presented in [9-12], which 

allows end user to define services and automation tasks 

for their personal environment. The Service Management 

Framework (SMF) presented in [9-11, 13] consists of a 

local Service Creation Environment (SCE) and a Service 

Delivery Platform (SDP). The presented SMF integrates 

the devices present in the personal area of the end users 

regardless of their technology and provides basic 

services, e.g. for multimedia communication. The end 

user can combine intelligent and communicable devices 

as well as the basic services using the SCE and thus 

define personalised services for his personal area (e.g. 

automation tasks, sensor-dependent signalling or 

monitoring). An elementary requirement for the platform 

described above was that it provides an opportunity to 

develop services intuitively. An intuitive development 

can be realised by a graphical development process and 

by modelling the behaviour of a system independently 

from underlying technology. Both were implemented in 

the above-mentioned approach. The graphical 

development process and the underlying methodology are 

discussed in section III. 



By the approach proposed in [1, 9-13], the end user has 

thus been given the opportunity to create graphically and 

intuitively services for his personal environment. An 

approach has been defined in [1, 10, and 12] as to how 

these services can be made available to other end users or 

organisations in order to gain added value through the use 

of the services. In [1, 10, and 12] it was proposed that end 

users combine the individually offered services to provide 

a more complex, intelligent and more powerful service. 

As shown in Fig. 1, a complex service consists of the 

combination of several distributed services that are 

networked together. Two ways exist to combine services 

into an application. Multiple end users can offer the same 

service with the same local functionality running parallel/ 

synchronously (service aggregation). Alternatively, end 

users can offer services that have a different functionality 

and are composed to an application by linking the 

services together (service composition). 

As described above, the central approaches for 

defining M2M applications have various disadvantages 

and are not very flexible. Therefore, as a prerequisite for 

the approach introduced above, it was defined that 

creation and provision of individual services and the 

cooperative provision of an application (consisting of 

distributed services) is exclusively decentralised, i.e. 

without the integration of logical as well as physical 

central entities into the overall system. Under these 

circumstances, the realisation of the approach cannot be 

implemented with the existing architectures for M2M 

platforms. Therefore, an approach has been presented in 

[1, 10, and 12], which allows implementation following a 

purely decentralised approach. 

This publication dedicates to present a more flexible 

methodology for realisation of M2M systems with the 

focus on dissolving the bindings to centralised entities, 

integration of the end user for realisation of M2M 

applications satisfying the individual requirements of end 

users, and realisation without specialised and dedicated 

M2M infrastructures. Furthermore, this publication aims 

to introduce details about the functional architecture of 

the proposed concept as well as methodologies forming 

the basis for the presented concept of autonomous 

decentralised M2M application service provision. 

II. FUNCTIONAL ARCHITECTURE 

In order to clarify how an application in M2M context 

is structured, definitions of [14, 15, and 16] are used to 

classify and separate service and application in context of 

application/ service provision in M2M (illustrated in Fig. 

2). It illustrates that an application consists of one or 

more underlying services that are combined (i.e. 

aggregated or composed) and, if required, exchange 

information. An application service contains the 

application and an application interface to make the 

application consumable for other entities. The services 

are realised by one or more service components, which 

form the building blocks of services. The service  

E
n

d
-u

s
e

r 
D

o
m

a
in

Access Network Layer

C
e

n
tr

a
l 

O
rg

a
n

is
a

ti
o

n
 

D
o

m
a

in

Access Network Layer

Service Consumer

Service Composition

Service Provider 1

Service x

Service Provider 2

Service y

Service Provider n

Service z

Service Aggregation

Service Provider 1

Service x

Service Provider 2

Service x

Service Provider n

Service x

IP Core Network/ Internet

Central 

Service 

Provider

 
Fig. 1. Cooperative M2M Application Service Provision. 

components itself are blocks of services. The service 

components itself are realised via several software 

applications executed on several execution 

environments.A service as well as an application can be 

realised on technical or non-technical principles (i.e. it 

can be provided using technical devices, e.g. computers, 

or by a human, e.g. personal assistance services). To 

distinguish the kinds of services and applications, if 

required they are indicated as technical service/ 

application or non-technical service/ application. General 

indication of both is service/ application. 

Fig. 3 shows the functional architecture of the concept 

for the autonomous P2P-based provision of M2M 

application services. The architecture is structured into 

four layers. The following describes the respective layers 

in their functionality. Network Layer: End user’s M2M 

gateways are connected with each another via an IP 

network, respectively the Internet. End users can be 

located at different geographic locations as well as in 

different access networks (wireless mobile networks or 

fixed access networks), which are interconnected via a 

core network. P2P Network Layer: End user nodes 

represent equivalent instances and are connected to each 

other via a P2P network. The P2P Network Layer 

includes the sub-layer P2P Overlay Layer and P2P 

Communication Layer. Any data storage in the presented 

system is decentralised via the end user clients within the 

P2P Overlay layer. For this purpose, the clients, 

respectively the peers form a P2P Overlay network. The 

Overlay network is either a pure structured Overlay 

network or a pure unstructured Overlay network (due to 

the general restriction to avoid also partly centralised 

system architectures). The Overlay network is used as 

explained in [10, 11, 13] to store the addressing  

Application Service 2Application Service 1

M2M 

Gateway

Fkt. 4Fkt. 3 Fkt. 6Fkt. 5 Fkt. nFkt. 7Fkt. 2Fkt. 1

Application 2

(e.g. Building Surveillance)

Execution Environment 1
(e.g. Mobile Phone)

Execution Environment 2

(e.g. Application Server)

Execution Environment n
(e.g. Embedded System)

Service 

Component 3

Service 2
e.g. inform supporters

Application 1

(e.g. Weather App)

Service 

Component 4

Service 

Component n

Service 

Component 1

Service 

Component 2

Service n
e.g. video surveillance

Service 1
e.g. event detection

Application Interface Application Interface

Software 

Application 1

Software 

Application n

Software 

Application 2

Software 

Application 3

 
Fig. 2. Classification of Service and Application. 



(IP) Network Layer

P2P Network Layer

P2P Overlay Layer

M2M Application 

Service

Service Service

M2M Communication Protocol

M2M Service Layer

M2M 

Communication 

Protocol

Service Service

P2P 

Overlay 

Protocol

M2M Application Layer

Service 

Description 

Language

M2M Application 

Service

M2M Application 

Service

Peer

A

Peer

N

Peer

A

P2P Communication Layer

Service 

Provider

A...N

Service 

Consumer

A...N

Peer

N

Access 

Network 1

Access 

Network N

IP Network/ 

Internet

 
Fig. 3. Functional Architecture. 

information of the peers (assignment temporary to static 

contact address). In addition, the P2P Overlay network is 

used to manage and configure services and applications 

(described in section IV). The information exchange 

between the peers for the service utilisation (service 

requests, confirmations) as well as the necessary 

signalling to generate the application automatically is also 

done directly between the peers. For this purpose, various 

M2M communication protocols (e.g., CoAP, HTTP, SIP, 

MQTT) can be used. M2M Service Layer: The services 

defined and provided by the end users are available via 

the M2M service layer and can be used via the 

corresponding interface. As described in section III and 

[9], the services are formally described by a service 

description language. The service interface is described 

by an interface specification and is available in the M2M 

Service Layer (explained in section III). M2M 

Application Layer: The distributed M2M application 

services are implemented within the M2M application 

layer. For this purpose, the services available via the 

M2M Service Layer are combined with each other as 

described in section III. The exchange of information 

between the services, respectively applications takes 

place via the P2P network layer by P2P communication 

protocols. [17] 

III. SYSTEM STRUCTURE AND APPLICATION CREATION 

In existing platforms for providing M2M applications, 

the configuration of automation tasks or the creation of 

application logic is highly dependent on the 

implementing systems. To prevent this, the concept 

defined in this research work was designed with a model-

based system structure, derived from [18]. Models, 

expressed by modelling languages, describe model-based 

infrastructures and systems. The behaviour of an 

application or a system is described by means of a 

platform-independent model, separated from the 

technology-specific realisation of the system [18]. The 

behaviour of a system can be modelled with a 

behavioural model in an abstract manner with much 

lesser complexity than the platform that implements the 

behaviour of the system or the application [19]. By 

stepwise abstraction, respectively transformation, an 

abstract modelled system is transformed acc. [20] into a 

concrete system by means of multi-step transformation. 

Fig. 4 shows the transformation level defined for the 

approach described in this publication. Derived from 

[20], transformation and mapping rules have been defined 

to automatically process the transformation from the 

abstract model of the system created by the user to the 

platform-specific models shown in Fig. 4 of the novel 

architecture for provision of distributed M2M 

applications described in this publication. As described 

above, the intuitive development of services and 

applications is done by graphically modelling the 

behaviour of a service or creating a behaviour model of 

service/ application. This allows end users to describe the 

system without having to have any specific knowledge 

about the execution platform. The behaviour of a system 

can be modelled intuitively with a state machine. For this 

purpose, states represent the devices/ services that should 

be combined, and transitions represent the connections 

(information flow) between the devices/ services. To 

enable end user to model a system using state machine 

concept, a domain independent modelling language is 

required which can be used to describe the behaviour of a 

system abstracted in form of a state machine. [17] The 

following requirements were initially defined for the 

selection of an optimal modelling language for this 

purpose: Machine readability: Since no further entities 

are to be involved in the application generation or its 

implementation, i.e. the application, respectively the 

service should be generated automatically after 

modelling, the modelling language must be machine-

readable. It must therefore be a formal language. 

Standardised language: It must be a standardised 

Platform Specific 

Model (PSM)

Transformation 

Level 3

Structured 

P2P Overlay

Unstructured 

P2P Overlay

SIP CoAP

Platform Specific 

Model (PSM)
Transformation 

Level 2

Data Storage

Platform Independent 

Model (PIM)
Transformation 

Level 1
End-User

Platform Specific 

Implementation

Transformation 

Level 4

Application Artifacts on distributed 

Runtime Environments

Transformation 

Pattern

Transformation 

Pattern

No Platform specific 

Knowledge required

Genaral Platform specific 

Knowledge required

Implementation specific 

Knowledge required

Tetailed Platform specific 

Knowledge required

P2P 

Communication

Transformation 

Pattern

 
Fig. 4. Transformation Level. 



modelling language in order to ensure the easiest 

portability. Immediate mapping of graphical and 

machine-readable notation: Since graphical modelling 

by the end user was defined as a central aspect of the 

concept, a direct mapping of the graphical notation 

(elements of the state machine) to the machine- readable 

notation must exist. Intuitive usability: Since the system 

is to be used by an average technically experienced end 

user after a short training, the complexity of the graphical 

notation has to be low. Complex and non-intuitive 

modelling forms reduce or eliminate end user usability. 

Existing parser/ interpreter implementation: To 

enable further processing the formal language by a 

machine, an implementation of a corresponding parser or 

interpreter must exist. Nested states: Combination of 

application services. A system (M2M application service) 

should be combined with other systems. A previously 

modelled system is to be reused by being embedded in 

another application. Parallel flows: Within an 

application, it should be possible to define parallel 

sequences in order to implement concurrent tasks. State 

parametrisation: The services that are to be combined 

must have the possibility to be parameterised (definition 

of configuration/ input and output parameters). Therefore, 

the states in the state machine must also be 

parameterisable. Conditional state transitions: The 

transition of a state or transmission of information to a 

service or the activation of a service should be provided 

with a condition. Synchronisation of states: To 

synchronise parallel flows, there must be a possibility for 

synchronisation. According to these requirements, the 

following state machine-based modelling languages and 

modelling concepts have been examined: Business 

Process Modeling Notation (BPMN), Business Process 

Modeling Language (BPEL), UML State Machines, Petri 

Nets, and Finite State Machines. The results of the 

evaluation are shown in TABLE I. Requirements the 

modelling languages/ concepts satisfy are marked with 

“+”; requirements not satisfied are marked with “-“; 

requirements partially satisfied are marked with “o”. The 

evaluation of the above-mentioned modelling languages 

showed that UML State Machines fully meet the 

requirements. UML State Machines are based on Harel 

Statecharts, which, due to their structure, meet the 

structural requirements for the state machine. The 

standardised description language StateChart XML 

(SCXML) makes it possible to express Harel statecharts 

in a formal notation. An SCXML parser, which is also 

available, enables the machine readability and thus the 

automatic processing of the formally described state 

machine. [17] 

For modelling of a system, the SMF, as described in 

[9-11, 13], provides a GUI to the end user. Using this 

GUI, the end user graphically creates a state machine that 

represents the behaviour of the system. The GUI provides 

an overview of all available devices and services. The 

services and smart devices that are in the personal 

environment of the end users, e.g. in its Smart Home, are  

TABLE I: EVALUATION OF STATE MACHINE MODELLING LANGUAGES 

 

stored within the SMF in a local repository.  The services 

offered by other peers are stored in the P2P Overlay as 

described in following section IV. An overview of the 

services stored in the P2P Overlay is also loaded by the 

SCE as described in section IV and displayed in the GUI. 

The end user now graphically combines the available 

services and devices by first selecting the desired devices 

or services and then connecting the input and output 

interfaces defined for the services and devices (transition 

of the state machine). As described above, the user 

models the behaviour of service/ application by defining 

a state machine. The following is a description of the 

elementary elements of the state machine, as well as the 

semantic defined by mapping the elements of the state 

machine to the service/ application components. In 

addition to these elements, further elements of a state 

machine can be used, which are not further explained at 

this point. State element: Devices, services, and 

applications are represented by states. State parameter: 

The state parameters represent the data model of the 

devices, services and applications. Input, output and 

configuration parameters can be defined. Global state 

machine parameter: This defines global attributes of a 

service/ application. Global attributes are available for all 

services and applications and are queried directly from 

the source. Transition: The transition from one state to 

another state (transition target) represents the connection 

of devices, services and applications and the associated 

information exchange. Transition condition: Transitions 

can be provided with conditions. This defines the 

precondition when device, service or application sends an 

information. Conditions can be optionally defined. 

Transition assign element: The transitions of a state 

machine have assign elements. These assign elements 

define how the output parameters are assigned to the 

input parameters of a device, service or application. Thus, 

the contents of the messages that are exchanged are 

specified via this element. Nested state element: Using 

the nested state element enables embedding an already 

 Modelling Language 

BPMN BPEL UML 
Petri 

Nets 

FSM 

Machine read. - + + + - 

Standardised + + + + - 

Immediate map. - + + + - 

Intuitive usability + o + - + 

Parser/ 

Interpreter 
- + + + - 

Nested states o o + + - 

Parallel Flows + + + + - 

State param. - + + - - 

Conditional 

trans. 
+ + + o - 

Sync. states o + + + - 



defined state machine, i.e. a service or an application, into 

another service or application. For this purpose, the 

corresponding state machine is embedded into a nested 

state element. The nested state element then is integrated 

as a simple state into the sequence of the state machine. 

Parallel state element: The parallel state element is used 

to model parallel sequences that can be synchronised as 

required at the end. [17] 

The interface description of a device, service or 

application represents the template for a state. It is 

embedded in a service or application description or 

managed separately. The interface description specifies 

the input/ output and configuration parameters as well as 

the value ranges of a service/ application. The interface 

description is used as a template to represent the devices, 

services or applications graphically and functionally in 

the GUI. In addition to the above parameters, the 

interface description contains further parameters for 

classifying and describing a device, service or application 

by e.g. keywords or prose. The interface description can 

be stored in a local repository or stored in the Overlay 

network. In addition, it is possible to request the interface 

description directly from a peer that offers a service. [17] 

The SCE automatically generates the formal 

description of the end user-modelled system using 

SCXML. Service/ application are completely described 

by the generated SCXML document. If it is a local 

service, the application description is stored locally, 

parsed, interpreted and executed according to the defined 

conditions. If it is a distributed application, i.e. consisting 

of distributed services offered by different peers, the 

application description is distributed to the peers that 

offer a service in the application context. In this case, 

each peer receives only the part of the application 

description that is required to configure and execute its 

individual service. Peers therefore do not have an 

overview of the overall system, which performs as a basis 

for securing the system. [17] 

IV. APPLICATION REGISTRY, CONFIGURATION, 

EXECUTION 

As described in section II, data storage in the described 

approach is performed via structured or unstructured P2P 

Overlay networks. The following is a description of the 

functions for registering and searching, which are 

implemented using the Overlay network for the 

management of services and applications. Services can be 

offered by different peers. The peers register their 

services via the Overlay network. To do so, they store the 

combination of service ID and their associated personal 

temporary contact information in the Overlay. If different 

peers offer the same services, several associated peers are 

stored under the same entry in the Overlay network. Each 

peer represents a specific instance of a service. Peers can 

request the Overlay network to get an overview of all 

available services or a certain subset of all services. This 

overview is required to generate an application from the 

various services as described in section III. Sub-sets of 

services may include e.g. that services are only available 

for a particular region, have further meta information that 

can specify a service more detailed, can only be 

consumed by a particular group, or implement a 

particular interface description. Depending on the type of 

request, the Overlay networks offer various ways to 

provide the overview of the services. For example, the 

meta-informations stored for a service can be searched by 

keywords. In order to obtain a specific instance of a 

service during the application configuration (see below), 

a peer makes a request (possibly restricted by search 

criteria) to the Overlay network. This returns a list of all 

found instances of a service. [17] 

An M2M application service consists of several 

services that are interconnected and exchange 

information. An M2M application is thus a concatenation 

of distributed services. Each service has input and output 

interfaces. To realise an application, the output interfaces 

of a service are connected to the input interfaces of 

another service, and the information is passed on from 

one service to the other. The description of the 

application, i.e., which service is associated with which 

other service, is defined by a formal application 

description (described in section III). The approach 

described in this publication has two phases to realise an 

application (illustrated in Fig. 5). A configuration phase 

in which the application is generated automatically and 

an execution phase in which the application is running. 

First, the following section describes the configuration 

phase. Each peer providing a service involved in an 

application receives the formal description of the 

application. As described in section III, each peer only 

receives the segment of the application description, which 

contains the necessary information to configure its 

individual service and insert it into the overall context of 

the application according to the application description. 

Inserting into the overall context of the application means 

that the peer connects the interfaces (input, output) of his 

service to the other associated services in order to 

exchange information. By automatically parsing the 

application description, the peer determines the following 

information. Service connections: To which other  

Service Level 3Service Level 2Service Level 1

A
p
p

lic
a

ti
o
n
 

E
x
e
c
u

ti
o
n
 P

h
a
s
e

A
p
p

lic
a

ti
o
n
 C

o
n
fi
g
u
ra

ti
o
n
 P

h
a

s
e

Subscribe Request

Response
Subscribe Request

Response

Invalid Configuration

Valid Configuration

Notify Message

OK

Notify Message

OK

Service x-2Service x-1 Service y-2Service y-1 Service z-1 Service z-2 Service z-3

Subscribe Request

Response Subscribe Request

Response

 
Fig. 5. Application Configuration and Execution Phase. 



services his offered service should be connected. A 

distinction is made here between input interfaces served 

by another service and output interfaces which are served 

by the service itself. Input interface information 

content: Which information is received via the input 

interface. Output interface information content: What 

information via the output interface should be transferred 

to another service. Output interface condition: Under 

which prerequisites an information is to be sent to a 

service via an output interface (directly on request or 

time-delayed, if a defined condition is met). Service 

configuration parameter: If configuration parameters 

have been defined for the offered service, the service 

must be configured accordingly. Global attributes: 

Information about the attributes provided by services that 

are not directly connected to their own service via an 

interface. [17] 

Each peer now uses the configuration information, 

determined by the automated parsing of the formal 

application description, to integrate its service 

autonomously into the overall context of the application. 

First, each peer determines the specific instances of the 

services to be connected to it, i.e. determines a list of 

peers that offer the service based on the service ID. This 

is done as described above. The exchange of information 

takes place in the approach described in this publication 

according to the Subscribe/ Notify principle. The 

connection of an input interface of a service with the 

output interface of another service is performed by 

sending the peer with its output interface a subscribe 

request. If the requested service is available, the 

requested peer confirms service utilisation request with a 

positive response. If the service is not available or is 

available later, the requested peer responds with a 

negative response and rejects to consume the service or 

defines a later usage time. Once the connections between 

the instances of the services are established, the local 

configuration of the service is performed. This consists of 

the assignment of the defined input and output 

information content to the interfaces (transition assign). 

Furthermore, the transfer of any existing service 

configuration parameters to the local service is 

performed. In addition, the conditions are configured 

locally that define the preconditions to transmit an 

information to a connected service via the output 

interface (transition condition). [17] 

As described above and shown in Fig. 5, the described 

approach also includes the execution phase additionally 

to the configuration phase of an application. In the 

execution phase, the exchange of information takes place 

between the peers, which represents the M2M application 

service. Once the connections between the service 

instances have been established, the information is 

transmitted between the services using Notify messages. 

Sending a notification message either is done directly on 

request (global attribute or condition less transition) or as 

soon as a defined condition (transition condition) applies. 

[17] 

It should be noted that the same service can be 

provided by several instances (peers). This may result in 

incomplete configurations of an application during the 

configuration phase. In addition to a complete 

configuration of an application, Fig. 5 also shows an 

incomplete configuration of an application). For this 

purpose section V presents an algorithm allowing all 

peers to determine independently if they have embedded 

themselves in a valid application configuration. The 

algorithm developed for this purpose is based on the 

computation of the transitive closure derived from [21] of 

all connections established in the P2P network in the 

application context. If a peer detects that it has embedded 

itself in an invalid application configuration, the 

established connections are automatically disconnected 

and, if necessary, a new local configuration process is 

performed. Thus, it is possible to determine 

independently a valid application configuration without 

having to have a complete view of the system. [17] 

V. APPLICATION VALIDATION 

Fig. 5 shows in the Invalid Configuration section that 

no path exists between the first services (service at most 

left service level) and the last services (service at most 

right service level). This means, although the peers have 

correctly configured their individual service connections 

according the application description, the application was 

not configured correctly in total. A correctly configured 

application contains at least one closed path through all 

service levels, starting at an instance at first service level 

and ending at an instance of a service at the most right 

service level. Because the invalid configurations are 

unusable for the application configuration, they first must 

be identified as described in the following and afterwards 

removed again. 

The peers require an overview of the overall 

configuration of the application in order to identify 

independently whether they have established an invalid 

connection to another peer. I.e. they need an overview of 

peers included in a specific instance of the application 

service connected to other peers. In order to provide such 

an overview of the overall configuration, the peers must 

document to which other peers they have established a 

connection. This documentation have to be available to 

all other peers, which in turn use the documentation to 

identify the invalid connections. As the P2P Overlay 

inside the P2P network layer is a shared database, it is 

used to store the connection information. 

The connections of the services are mapped to a 

directed graph by representing the peers as nodes and the 

connections between the peers as edges between the 

nodes. Arithmetic operations applied to that graph enable 

to determine whether a closed connection exists from an 

initial node to an end node. All nodes whose connections 

are not in the path between the start and end nodes have 

invalid connections and must remove them again. The 

structure of the graph, represented as adjacency matrix, is 



stored as a data structure inside the Overlay. The 

structure of the adjacency matrix is defined as follows. 

The nodes of a graph are specified as row and column 

names in the adjacency matrix, and the connections 

between the nodes as entries in the associated fields in the 

adjacency matrix. Because it is a directed graph, the 

nodes from which a connection originates are specified in 

the row names, and the destination nodes of these links in 

the column entries. A uniform name for the column and 

row entries is defined as starting with the service ID as 

prefix and appending the specific peer ID as a suffix. 

If a peer has established a connection according to the 

application description with another peer, respectively 

has associated a service offered by him with another 

service, it executes the algorithm shown in Fig. 6 in order 

to document the established connection in the adjacency 

matrix. The following describes how peers can use the 

connection overview stored in the Overlay in order to 

identify and remove the invalid connections. 

The arithmetic operations and algorithms applicable on 

graphs allow the evaluation of characteristics of a graph. 

The Transitive Closure of a binary relation in a graph 

(link between nodes), calculated e.g. by the algorithm of 

Warshall [21], indicates which node pairs are mutually 

accessible. This information determines whether a 

destination node is reachable from a start node, possibly 

with the inclusion of other nodes. All nodes contained in 

the transitive closure of a node can be accessed from the 

associated node. Since the connection graph is stored in 

the Overlay, all peers request and use it to compute the 

transitive closure of the connection graph independently. 

Thus, each peer gets an overview of which peers are 

reachable among each other. In order to verify the 

complete configuration of an application, each peer, for 

its individual node in the connection graph autonomously 

executes the algorithm described in Fig. 7. First, the peer 

queries the complete adjacency matrix of the connection  

Finish

Load Adjacency Matrix of Node 

Connections from Overlay

Create Adjacency 

Matrix

Store Adjacency Matrix to 

Overlay

Start

Insert Column and Row for 

personal Service Instance

Mark Entries in Adjacency Matrix for personal Row. 

Assign "0" (no Connection) or "1" (Connection)

[No Adjacency Matrix created so far]

[Adjacency Matrix 

already created]

 
Fig. 6. Algorithm for Documentation of Connection Establishments. 

Finish

Disconnect Connection to other 

Nodes in current Application Context

Load Adjacency Matrix of Node 

Connections from Overlay

Calculate Transitive Closure of 

Adjacency Matrix

Identify Column-IDs for Nodes 

on last Service Level

Determine Reachability of 

Nodes on last Service Level

[At least one Instance of each 

Service Node reachable]

[No Instance of at least one Service reachable]

Identify Row-IDs for Node on 

first Service Level

Determine Reachability of personal Node 

starting from Node on first Service Level

[Personal Node not reachable]

[Personal Node 

reachable]

Start

 
Fig. 7. Algorithm for Determination of invalid Application Service 

Configuration. 

graph from the Overlay. For the resulting connection 

graph, the peer then calculates the transitive closure. 

Thus, the peer has an overview of which nodes are 

mutually accessible. The column entries for the nodes on 

the last service level are determined afterwards. The 

determination of the services at the last service level is 

made possible since the last services in the formal 

application description are marked as "final state". This 

determines the prefix of the column description. The 

calculating peer does not know the suffix, but by the 

uniformly defined format of the column names enables 

the determination of the column name without knowledge 

about the suffix. After identifying the nodes at the last 

service level, it is checked whether these nodes, starting 

from the own node, are reachable. If there is not at least 

one instance of each service at the last service level 

reachable, an invalid configuration of the application 

exists and the connection to the peers must be removed 

again. If a connection to the instances at the last service 

level exists, the next step checks whether the own node is 

accessible by an instance of a service on the first service 

level. For this purpose, the row ID of the nodes on the 

first service level is determined first. The determination 

of the service on the first service level is made possible 

by marking the first service in the formal application 

description as "initial state". This determines the prefix of 

the line description. Similar to the determination of the 

column ID, this makes it possible to identify the row IDs 

of nodes on the first service level. After identifying the 

nodes on the first service level, it is checked whether the 

own node is accessible from one of these nodes. If this is 

the case, a continuous connection from the first and the 

last service level exists.  

Incomplete configuration of the application exists 



when: first, at least one instance of each service on the 

last service level of the connection graph cannot be 

reached from its own node and/ or second, the own node 

cannot be reached by at least one instance of the service 

at the first service level of the connection graph. If a peer 

detects that it is within an invalid configuration of the 

application, it removes the connections to other peers. 

Removing a connection between the peers is done by 

sending a request to the connected peer with the request 

to disconnect. 

VI. PROTOTYPE AND EVALUATION RESULTS 

In order to verify the above introduced concepts for 

autonomous decentralised M2M Application Service 

Provision as well as to evaluate the behaviour of the P2P 

Network Layer a prototype has been realised 

implementing the described M2M service platform. This 

section presents the testbed setup and the performance 

results. As prototype hardware a high performance server 

system is used equipped with 2x24 CPUs und 2x64 GB 

RAM. This server system contains the hypervisor OS 

Proxmox [22] that provides virtual host systems and 

virtual networks. This makes it possible to implement the 

prototype system without affecting the measurements by 

activities that can occur in a physical network. In order to 

implement the scaling of the M2M system, the container 

virtualisation system Docker [23] is used within the 

virtual hosts. This makes it possible to emulate a large 

number of standalone containers, i.e. peers, without being 

restricted by the hardware requirements of virtual 

machines, as would be the case when using a hypervisor 

virtualisation solution. Fig. 8 shows the prototype setup. 

It consists of two VMs each implementing a Docker host. 

Docker hosts are connected to each other via two separate 

virtual networks. The Docker hosts contain several 

Docker containers whose number is scalable as well as 

internal networks. Through the internal networks, 

different access networks are emulated via which the 

peers, represented by the Docker containers, are 

connected. This makes it possible to evaluate not only the 

P2P system itself, but also the behaviour of distributed 

M2M applications in different network topologies. The 

prototype includes two separate networks to which the 

Docker hosts as well as the peers themselves are 

connected: the P2P/ M2M Network (illustrated with solid 

lines) and a separated Management Network (illustrated  

Management Network

20.0.0.0/8

Dockerhost 1 eth1

IP: 10.1.0.1 IP: 20.1.0.1

Docker-Container 1 Docker-Container n

Dockerhost 2 eth1

IP: 10.2.0.1 IP: 20.2.0.1

Docker-Container 1 Docker-Container n

Control Logic

MySQL Server

P2P/ M2M Network 

10.0.0.0/8

Bridge n

IP: 10.1. n .1

Veth n -0

IP: 10.1. n .2

10.1. n .0/24

Bridge n-M

IP: 20.1. n .1

Veth n -1

IP: 20.1. n .2

20.1. n .0/24

Bridge 1-M

IP: 20.1.1.1

veth1-1

IP: 20.1.1.2

20.1.1.0/24

Bridge 1

IP: 10.1.1.1

veth1-0

IP: 10.1.1.2

10.1.1.0/24

Bridge 1

IP: 10.2.1.1

veth1-0

IP: 10.2.1.2

10.2.1.0/24

Bridge 1-M

IP: 20.2.1.1

veth1-1

IP: 20.2.1.2

20.2.1.0/24

Bridge n

IP: 10.2. n .1

Veth n -0

IP: 10.2. n .2

10.2. n .0/24

Bridge n-M

IP: 20.2. n .1

veth1-1

IP: 20.2. n .2

20.2. n .0/24

 
Fig. 8. Prototype Setup. 

Table II: Evaluation of M2M Protocol Behaviour 

 

with dashed lines). The management network is used to 

control the individual peers, perform and control 

performance measurements as well as to log them 

without affecting the behaviour of the networks over 

which the peers are connected. Two additional VMs are 

also connected to the management network: the Control 

Logic Server, which contains the control logic of the 

prototype, and a MySQL server that is used to log 

measurement results. The Docker containers contain the 

distributed application logic to provide the M2M services 

and to perform the autonomous configuration of the 

M2M application. Based on this prototype setup the 

behaviour of the P2P network layer was analysed. The 

M2M communication protocols SIP and CoAP has been 

analysed as well as unstructured P2P Overlay networks 

represented by the Gnutella architecture [24] and 

structured P2P Overlay networks represented by the 

Chord architecture [25]. The analysis results are 

explained below. Table II shows the comparison of the 

M2M communication protocols SIP and CoAP for 

various communication scenarios for M2M application 

configuration and execution. It can be seen here that the 

number of packets sent and the required data volumes 

when using CoAP is significantly lower than with SIP. 

The use of CoAP offers advantages with regard to the 

required number of packages as well as the data volume. 

If an existing telecommunication infrastructure is to be 

used for peer communication, SIP offers the advantage 

that no additional protocol stack is required. The network 

resources when using SIP are significantly reduced if the 

alternative TinySIP messaging library [26] is used for 

message exchange. It enables sending SIP messages with 

a maximum message size of 29 bytes. Fig. 9-12 shows 

the analysis of the significant characteristics of P2P 

Overlays with scaling number of peers. Fig. 9 shows the 

effort for inserting/ searching/ removing operation of a 

data record in a structured P2P Overlay, as well as the 

initial entry of a peer to the Overlay. The effort in scaling 

the peers does not increase significantly. In comparison, 

Fig. 10 shows the effort for searching a data record in an 

unstructured P2P Overlay on the basis of the transmitted 

messages. The effort increases linearly to the number of 

peers and is dependent on the number of connections 

between nodes (ABN). This is caused by the Query 

Use Case M2M Protocol 

CoAP SIP 

Packets Bytes Packets Bytes 

Successful subscription 

establishment 
2 138 6 2593 

Unsuccessful subscription 

establishment 
2 119 2 837 

Sending notification 2 126 2 913 

Subscription refreshment 2 139 4 1743 

Subscription termination by 
a subscriber 

2 126 4 1718 

Subscription termination by 
a notifier 

2 120 2 860 



Flooding process for message forwarding, which is 

typical for unstructured P2P systems. In Fig. 10 the 

queries (Query) and the corresponding responses (Query-

Hit) are shown. The queries are significantly higher than 

the answers. Compared to structured P2P Overlays, this is 

a crucial disadvantage. Both types of P2P Overlays 

require a stabilisation process of the network, which is 

executed continuously parallel to the data record requests. 

The effort for both approaches scales linearly. However, 

this is dependent on the respective interval of the 

stabilisation process of the algorithm. The analysis shows 

that a structured P2P Overlay requires significantly more 

effort for the stabilisation process than an unstructured 

Overlay. This is justified by the fact that the algorithm for 

validating the topology of the Overlay with a structured 

P2P Overlay is much more complex. In the case of an 

unstructured P2P Overlay, the simple request of 

accessibility of neighbouring nodes is done. The analysis 

of the P2P Overlay approaches has shown that the effort 

for finding a data record in an unstructured P2P Overlay 

is significantly higher than with a structured P2P Overlay. 

An unstructured P2P Overlay, offers the advantage that 

the effort to re-organise the Overlay when a peer leaves is 

significantly less. This is particularly advantageous when 

a frequent fluctuation of peers exist. Furthermore, in 

structured P2P Overlays the finding of an existing data 

record is guaranteed; on the other hand, this aspect cannot 

be ensured in unstructured P2P Overlays. In unstructured 

Overlays, however, a keyword-based search is possible. 

VII. CONCLUSIONS 

This publication presented principles and details of a 

novel concept for autonomous and decentralised M2M 

application service provision. This concept offers new 

possibilities for applications, realised by several peers, 

independent of central appliances or corporations. 

Especially the independent structure of presented system 

architecture and the simplicity of M2M service/ 

application creation combined with the autonomous 

management of M2M application services form the 

strength of the proposed framework and offer a promising 

approach for supporting M2M networks with end user 

environment integration. The analysis of the M2M 

communication protocols and the P2P Overlay 

architectures has shown that all of them have their 

strengths and weaknesses. Optimal selection of the M2M 

protocols, respectively P2P Overlay architecture depends 

on the application scenario and network topology. 

 

 
Fig. 9. Operations in structured P2P Overlay. 

 
Fig. 10. Dataset Request Operation in unstructured P2P Overlay. 

 
Fig. 11. Stabilisation Process of a structured P2P Overlay  

 
Fig. 12. Stabilisation Process of an unstructured P2P Overlay. 

ACKNOWLEDGMENT 

The research project P2P4M2M providing the basis for 

this publication is partially funded by the Federal 

Ministry of Education and Research (BMBF) of the 

Federal Republic of Germany under grant number 

03FH022IX5. The authors of this publication are in 

charge of its content. 

REFERENCES 

[1] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita, “P2P 

based service provisioning in M2M networks”, Proc. of 

Sixth International Conference on Internet Technologies & 

Applications (ITA 15), Wrexham, Wales, UK, September 

2015. 

[2] S. Clayman, A. Galis, "INOX: a managed service platform 

for interconnected smart objects", Proc. of the workshop 

on Internet of Things and Service Platforms 2011 

(loTSP'11), pp. 1-8, December 2011. 
[3] S. Zhang, J. Zhang, W. Li, "Design of M2M Platform 

Based on J2EE and SOA", 2010 International Conference 

on E-Business and E-Government, pp. 2029–2032, 

September 2010. 

[4] Q. Xiaocong, Z. Jidong, "Study on the structure of 

“Internet of Things(IOT)“ business operation support 

platform", 2010 12th IEEE Int. Conf. Commun. 

Technology (ICCT), pp. 1068-1071, November 2010. 

[5] L. Foschini, T. Taleb, A. Corradi, D. Bottazzi, "M2M-

based metropolitan platform for IMS-enabled road traffic 

management in IoT", IEEE Commun. Mag., vol. 49, no. 11, 

pp. 50-57, November 2011. 

[6] Y. J. Kim, E. K. Kim, B. W. Nam, I. Chong, "Service 

composition using new DSON platform architecture for 

M2M service", Proceedings of the International 



Conference on Information Network 2012, pp. 114-119, 

February 2012. 
[7] J. Kim, J. Lee, J. Kim, J. Yun, "M2M Service Platforms: 

Survey Issues and Enabling Technologies", IEEE 

Communications Surveys & Tutorials, vol. 16, no. 1, pp. 

61-76, First Quarter 2014. 

[8] oneM2M Standardisation Committee, “oneM2M Release 2 

specifications”,http://www.onem2m.org/technical/publishe

d-documents, December 2016. 

[9] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita, “Load 

reduction in distribution networks through P2P networked 

energy-community”, Proc. of Fifth International 

Conference on Internet Technologies & Applications (ITA 

13), Wrexham, Wales, UK, September 2013. 

[10] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita, “P2P-

based community concept for M2M Applications”, Proc. 

of Second International Conference on Future Generation 

Communication Technologies (FGCT 2013), London, UK, 

December 2013. 

[11] M. Steinheimer, U. Trick, P. Ruhrig, R. Tönjes, M. 

Fischer, D. Hölker, “SIP-basierte P2P-Vernetzung in einer 

Energie-Community“, ITG-Fachbericht 242: 

Mobilkommunikation, VDE Verlag GmbH, Osnabrück, 

Germany, ISBN: 978-3-8007-3516-7, ISSN: 0932-6022, 

pp. 64, Mai 2013. 

[12] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita, “P2P-

based M2M Community Applications”, Proc. of Eleventh 

International Network Conference  (INC 2016), Frankfurt, 

Germany, July 2016. 

[13] M. Steinheimer, U. Trick, P. Wacht, P. Ruhrig, 

“Decentralised optimisation solution for Smart Grids using 

Smart Market aspects and P2P internetworked Energy-

Community“, IEC/ SGCC/ VDE World Smart Grid Forum 

2013, Berlin, Germany,  September 2013. 

[14] ITU-T Y.101 (2000), Recommendation, “Global 

Information Infrastructure terminology: Terms and 

definitions”, ITU, 2000. 

[15] ISO IEC 20000-1:2011 (2011) “Part 1: Service 

management system requirements”, IEEE, 2011. 

[16] ITIL V3.1.24 (2007) “Glossary of Terms, Definitions and 

Acronyms”, ITIL, 2007. 

[17] M. Steinheimer, “Optimierte P2P-Dienstearchitektur für 

hochverfügbare M2M-Applikationen (P2P4M2M)”, TR-

004, Frankfurt, Germany, October 2016. 

[18] Object Management Group, “OMG Model Driven 

Architecture”, http://www.omg.org/mda/, January 2017. 

[19] Object Management Group, “Model Driven Architecture 

(MDA) MDA Guide rev. 2.0”, Boston, USA, June 2014. 

[20] R. Petrasch, O. Meimberg, “Model Driven Architecture“, 

dpunkt.verlag, Heidelberg, Germany, ISBN: 978-3-89864-

343-6, 2006. 

[21] V. Turau, “Algorithmische Graphentheorie“, De Gruyter 

Oldenbourg, Munich, Germany, ISBN: 978-3-486-59057-

9, 2009. 

[22] Proxmox Server Solutions, https://www.proxmox.com/en/, 

April 2017. 

[23] Docker, https://www.docker.com/, April 2017. 

[24] The Gnutella Protocol Specification v0.4, http://web.stanfo 

rd.edu/class/cs244b/gnutella_protocol_0.4.pdf, April 2017. 

[25] I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. 

Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup 

Service for Internet Applications”, IEEE/ACM 

Transactions on Networking, Vol. 11, 2013. 

[26] TinySIP, EUROPEAN PATENT SPECIFICATION EP 1 

968 275 B1, October 2016. 
 

Michael Steinheimer received the B.Sc. 

degree from the University of Applied 

Sciences Darmstadt, Germany, in 2008 and 

the M.Sc. degree from the University of 

Applied Sciences Darmstadt, Germany, in 

2011, both in computer science. He is 

currently pursuing the Ph.D. degree with the 

Centre for Security, Communications and 

Network Research, University of Plymouth, 

UK. His research interests include 

decentralised service provision, Machine-to-Machine 

Communications, and Peer-to-Peer Networks. 
 

Ulrich Trick received the Dipl. Ing. 

degree from the University of 

Kaiserslautern, Germany, in 1983 in 

Electrical Engineering - 

telecommunications. He received his 

Doctoral degree from the University of 

Kaiserslautern, Germany, in 1987. Since 

2001 he is Professor for 

Telecommunication Networks with the Department for 

Computer Science and Engineering at Frankfurt University of 

Applied Sciences, Germany. His research interests include 

NGN, M2M, IoT, P2P and virtualisation. 
 

Bogdan Ghita received the Dipl. Eng. from 

Politehnica University of Bucharest, 

Romania, in 1998 and his PhD from 

Plymouth University, UK, in 2005. He is 

Associate Professor at Plymouth University 

and leads the networking area within the 

Centre for Security, Communications, and 

Network research. His research interests 

include computer networking and security, 

focusing on the areas of network performance modelling and 

optimisation, wireless and mobile networking, and network 

security. He has been principal investigator in several industry-

led, national, and EU research projects. He is the chair of the 

International Networking Conference series. 

 

Gregor Frick received the B. Eng. degree 

in Electrical Engineering and Information 

Technology from the Frankfurt University 

of Applied Sciences, Germany, in 2014 and 

the M. Eng. degree in Information 

Technology from the Frankfurt University 

of Applied Sciences, Germany, in 2017. He 

is currently preparing his Ph.D. course with 

the Centre for Security, Communications and Network 

Research, University of Plymouth, UK. His research interests 

include Wireless Mesh Networks, Network Functions 

Virtualisation, and Disaster Networks. 
 

Woldemar Fuhrmann is Professor at Department for 

Computer Science at the University of Applied Sciences 

Darmstadt, Germany. His research interests include Next 

Generation Mobile Networks and Telecommunications. 


