
 169

DISCUSSION ON A FRAMEWORK AND ITS SERVICE
STRUCTURES FOR GENERATING JSLEE BASED

VALUE-ADDED SERVICES

Thomas Eichelmann, Woldemar Fuhrmann, Ulrich Trick, Bogdan Ghita

Research Group for Telecommunication Networks, University of Applied Sciences
Frankfurt/M., Frankfurt/M., Germany

Centre for Security, Communications and Network Research, University of Plymouth,
Plymouth, United Kingdom

University of Applied Sciences Darmstadt, Darmstadt, Germany
E-mail: eichelmann@e-technik.org

ABSTRACT
This paper describes the general structure for a framework to generate value-added services. These
presented service structures provide the basis for service composition within the JSLEE framework. It
offers the possibility that value-added services are created, orchestrated, changed and managed from
predefined and pre-deployed service components at runtime, within the JSLEE framework. The paper
focuses on different approaches for the structure of service components. Several important
characteristics of the structures are compared and discussed.

KEYWORDS
JSLEE, value-added services, service composition in telecommunication, service structure
comparison

1. INTRODUCTION
The development of value-added services is very time consuming and experts are required to
develop these services. The dream is to develop value-added services as easy as web services in
the IT sector. To reach this goal, service description languages and graphical development tools
may help. For the IT sector these tools already exist. A common tool to develop web services is
e.g. BPEL (Business Process Execution Language) [1]. So, some projects [2] build their own
tools for the development of value-added services, others try to use existing tools to generate
these services [3].

This document describes the principles for an architecture to generate value-added services and
focuses on the description and the analyses of considered component structures. A service can
consist of one or more service components. Such a service component implements the service
workflow or a part of it. Fine grained service components can be composed to complex services.
In this paper JSLEE (Java Service Logic Execution Environment) [4] is used as execution
environment for the services. But the discussed characteristics described in section 2.3 may also
be relevant for other execution environments like Servlets or JEE (Java Platform, Enterprise
Edition) Beans. The paper is structured as follows. In section 2.1 the principle structure for an
architecture is defined. Four possible component structures are presented in section 2.2. In
section 2.2.1 a structure is introduced which consist of a single component. From this first
structure another one is derived, which supports multiple service components for parallel
execution. In section 2.2.3 the orchestration of service components and in section 2.2.4 the

 170

choreography of service components are described. In section 2.3 selected characteristics of the
described component structures are discussed.

2. FRAMEWORK ARCHITECTURE, UNDERLYING SERVICE STRUCTURE AND
SELECTED CHARACTERISTICS
In this chapter the possible architecture for a service creation framework is described and the
general elements of the architecture are presented. JSLEE is assumed as execution environment
for the services. Four different service structures are presented and selected characteristics are
discussed.

2.1. The framework architecture
The architecture that is presented here consists of four main elements, service creation
environment, service deployment, service execution environment (SEE) and service transport
layer. It is designed for service creation, deployment and execution. This is a generic
architecture based on an architecture that is used in the BMBF project TeamCom [3]. In Figure
1 an overview of the generic architecture is illustrated.

The service creation environment consists of the elements, developer GUI and code generator.
With the developer GUI the service developer can describe the workflow of the service. This
service description has to be translated by a code generator into the language of the service
execution environment. In this case Java is used as this language. The service description is
translated into the Java language and a deployable unit (DU) is build from the service
description. The service can be deployed on one or more application servers. It is executed in
the service execution environment. The service components are managed in the component
model. In section 2.2 four approaches of the component structure are described.

Service Creation Environment

Service Deployment

Component

Developer GUI

Code Generator

Service Execution Environment

Service Transport Layer

Component
Component

Figure 1. Framework architecture

The intention of the Graphical User Interface (GUI) is to offer the development of value-added
services in a simple and fast way. Therefore the framework requires a description language that
is simple but powerful enough to describe telecommunication services. Different approaches are
known for a usage of a graphical user interface for the description of telecommunication
services. Some approaches try to implement their own GUI e.g. [2]; others e.g. [3] use existing
graphical development tools. The BPEL process in Figure 2 is an example, how value-added
services can be designed with an existing tool. In this case the Oracle JDeveloper is used to
build an echo service which sends incoming Instant Messages (IM) back to the sender
(bpelecho_client). The process consists of three activities, a receive activity (receiveIM) which
waits for incoming messages, an assign activity (Assign_Message_and_MessageReceiver)
which copies the text from the received message into the new message and configures the
sender and the receiver of this new message, and an invoke activity (sendbackIM) which returns
the message back.

 171

Figure 2. BPEL Process Echo Service

If the output of the GUI is not an executable value-added service, a code generator is required to
convert the output of the GUI into the service code. A service description may consist of some
definition files, description files and other resources which serve as input for the code generator
(see Figure 3). In the case JSLEE is used as execution environment, a deployable unit is
generated as output of the code generation process. The service deployment is used to copy the
service to the application server. It uses the deployable unit that was generated by the code
generator. The deployable unit consists of the service code, the required resources and the
deployment and service descriptors. The descriptors define the service components and other
parameters of the service (see Figure 3).

Schema Files

Service Description

Other Resources

Service Code

Deployment
Descriptor
Service
Descriptor

Deployable Unit

Code
Generator

...

Figure 3. The Code Generator

As service execution environment the JSLEE framework is used. JSLEE is designed for
ensuring low latency and providing high throughput to accomplish the requirements for
communication services. The components of the service are executed in the component
container. In JSLEE, these service components are called Service Building Blocks (SBBs). Four
different structures of these service components are described in section 2.2.

The Service Transport Layer in the JSLEE framework abstracts different protocols in order to
enable upper service layers to be independent of a specific communication protocol. Therefore it
supports several communication networks. In [4] so-called Resource Adaptors (RAs) are
defined abstracting the underlying infrastructure. These Resource Adaptors provide a common
Java API that hides the communication protocol underneath. The communication with the SBBs
is accomplished by the use of events.

2.2. The component structure
After once being generated, a service can consist of one or multiple service components. In the
latter case, these components have to communicate together by exchanging events. The service
components have to cooperate to ensure the fulfilment of the service workflow. In this section
four different service component structures are presented, the single component structure in
section 2.2.1, the parallel component structure in section 2.2.2, a structure that orchestrates

 172

service components in section 2.2.3 and a structure that uses choreography for the components
in section 2.2.4.

2.2.1. Single component structure

In this concept the code generator creates only one component which represents the whole
service. Within this component a state machine controls the service workflow. It decides about
the events that are allowed to be received in the individual states. Figure 4 shows a scenario
which represents a service that consists of only one SBB and two resource adaptors. The SBB in
this figure sends and receives events from the resource adaptors. The RAs translates incoming
protocol messages from the network to events and vice versa. From all three activities in the
echo service in Figure 2 only one SBB will be generated.

Figure 4. Single component structure example

This concept was introduced in [5], implemented and proved in [3, 6]. In principle it is possible
to generate value-added services that consist of only one component, but with this approach it is
not possible to realise parallel execution of service workflow elements. This characteristic leads
to the new approach, the parallel component concept.

2.2.2. The parallel component approach

As described in the previous section, the problem with the execution of parallel workflow
elements leads to a parallel component approach. JSLEE only supports sequential program
execution in one SBB. It is not allowed to use multithreading within an SBB. A possibility to
use parallel program execution in JSLEE is to use more than one SBB. They can be executed in
parallel from each other. The concept to use this characteristic to obtain parallel executed
service parts is described in [7]. If a parallel activity is required in the workflow, a SBB is
generated for each parallel workflow part. One SBB is generated for each parallel element
sequence within the workflow. The elements which are represented by one SBB are executed
sequentially. The generated SBBs (see Figure 5) are communicating with the help of events.

Figure 5. Parallel component structure example

If the workflow of the Service SBB reaches the position in the workflow where parallel
execution is required, events are fired to the SBBs which represent the other parallel parts of the
workflow. After the Service SBB has fired its events, it waits for the answer events from the
called SBBs. The Service SBB uses request events to signal the other SBBs to start processing.
After the Service SBB has fired its events to all parallel SBBs, it waits for the returning
response events. With the request events the parallel SBBs receives the required parameter
values from the main SBB. These values are used to initialise and to activate the SBBs. After

 173

processing of the SBB the changed parameter values are assigned to the response event and
delivered back to the main SBB. If the Service SBB has received the response events from all
parallel SBBs, the Service SBB can copy the parameter values from the events and continues
processing.

2.2.3. Orchestration of service components

In the next two sections the idea of parallel service components is further extended. This section
describes a component structure that allows the orchestration of service components. This
concept was introduced in [8, 10], a prototype is already in development, and an enhanced
framework will be published soon. In orchestration, a central process takes control over the
involved services and coordinates the execution of different operations on the services involved
in the operation (according to [9]). A special control SBB is required to control the service
workflow and to coordinate the SBBs of the service. The control SBB assigns the work to the
other SBBs, sets the required parameters, and decides, on which events an SBB has to listen and
what events he has to fire. For each element of the workflow a new SBB is required. These
SBBs implement the work task of the respective workflow element. For the echo service in
Figure 2, three SBBs are required, i.e., one for each activity. The control SBB communicates
with these SBBs via events. The control SBB is triggered by a service start event and initiates
the required SBBs. The control SBB decides which SBB should be called next. In Figure 6 the
control SBB is activated by the service start event. The control SBB determines which SBB is
the next and fires an event with the required parameter to this SBB. The called SBB (in this case
SBB A) performs its work, e.g. communicating with a resource adaptor. Subsequently the result
is returned to the control SBB. With this information, the control SBB calls the next SBB
according to the state machine. This procedure is repeated until the workflow is completed.

Figure 6. Orchestration component structure

This concept requires most of the intelligence in the control SBB. In the next concept,
choreography is used for the service component structure.

2.2.4. Choreography of service components

Choreography does not require a central component. Each service involved in the choreography
knows when to execute its operations and also knows its interaction partners (according to [9]).
In this choreography based concept (introduced in [8]), the generated SBBs control themselves.
No special control SBB is needed. These self-controlled SBBs communicate directly with each
other. They get activated when they receive an event from its predecessor. The event includes
all required parameters. So the SBB can start working after receiving the required event. Figure
7 illustrates an example service with the self-controlled SBB architecture. This service consists
of three SBBs, SBB A, SBB B, and SBB C. Two resource adaptors are used. The service is
activated when SBB A receives an event from a resource adaptor. The SBB A communicates
with the resource adaptor and fires a new event to SBB B. After SBB B finished its work (e.g.
copy and set parameters), this SBB fires an event to the SBB C. When SBB C has finished its
part of the workflow, it fires an event to the resource adaptor.

 174

Figure 7. Choreography component structure

2.3. Selected characteristics for the component structure
All of the described concepts have their advantages and disadvantages. In this section several
common characteristics of the described concepts are discussed. In Table 1 the different
concepts of the component structure are compared based on selected characteristics.

Table 1. Selected characteristics of the component structure

Selected characteristics
Single
Component
Concept

Parallel
Component
Concept

Orchestration
Component
Concept

Choreography
Component
Concept

Parallel execution No Yes Yes Yes
Loose coupling No No Yes Yes
Code Generator required,
precompiled

Yes Yes Depends on
implementation

Depends on
implementation

Easy expandable No No Yes Yes
3rd-Party development No No Yes Yes
Distributable service parts No No Yes Yes
Live reconfigurable No No Yes Yes

2.3.1. Parallel execution

As already mentioned in the section 2.2.1 the execution of parallel workflow elements is
required in many value-added services. For a workflow which was generated with the single
SBB concept only one component is created, which implements the whole workflow. In this
case parallel execution of parallel parts of the workflow is not possible. The parallel component
concept was specially developed to support parallel workflow execution. Also the component
orchestration and the component choreography concept support parallel workflows.

2.3.2. Loose Coupling

Loose coupling means that components which are part of a service are mostly independent from
each other. The first concept only consists of one component, so loose coupling is not
supported. If there are no parallel sections within the workflow the parallel component approach
behaves similar as the first concept and consists only of one component. Every parallel section
which is added to the workflow, also adds a new component to the service. But between these
service components a relatively high amount of dependencies exists. In both of the other two
concepts, the orchestration and the choreography, a service consists of multiple components.
Here loose coupling can be realised.

2.3.3. Code Generator required

For the single component concept and for the parallel component concept a code generator is
required. The service components have to be compiled and the deployable unit has to be built
with all components, the deployment descriptors, and other required resources. The
orchestration concept and the choreography concept can also be compiled and put into a
deployable unit. But it is also possible that the workflow will be deployed directly to the AS.

 175

There the workflow will be analysed, the required SBBs are already deployed so the service is
composed from the already deployed components. The composed service can then be executed.

2.3.4. Easily expandable

The support of new protocols depends on the underlying execution environment and on the
implementation of the component structure. An execution environment like JSLEE supports the
new protocols by adding a new resource adaptor for the respective protocol. In the single
component approach and the parallel component approach the support of new protocols is
possible but these approaches require a code generator. For each protocol which has to be
supported, the code generator needs to be changed. The new protocol support has, in a worst
case scenario, to be implemented directly within the code generator source code. So the
extension of the code generator, for a support of new protocols, may not be easy. The other two
approaches do not require a code generator. In these cases the service consists of different
components. Special service components implement the communication with the resource
adaptors. To support a new resource adaptor and a new protocol, only these special service
components have to be implemented.

2.3.5. 3rd party development

The single component concept and the parallel component concept do not really support 3rd
party development. Changes have to be made in the Code Generator. The orchestration and the
choreography approach both use defined service components for the communication with
resource adaptors, these service components also use a defined set of interfaces which has to be
implemented. These service components can be developed by 3rd party developer.

2.3.6. Distributable service parts

In the single component concept, the service consists only of one component. So it is not
possible to distribute the service to other computers. If there are parallel program parts in a
workflow for a service that is generated from parallel components, the distribution of service
components is possible but should already be known at compilation time. The orchestration and
choreography concepts consist of multiple service components which can be composed at
runtime. The communication between the service components takes place via events. If some
components of the service are running on another computer, this event has to be sent over the
network between the components. Instead of sending an event to a local service component, the
event is send to a resource adaptor. The resource adaptor translates the event into protocol data
units (PDUs) and sends these PDUs to the according JSLEE application server. There, another
resource adaptor receives the PDUs and translates them into an event. This event is sent to the
service components.

2.3.7. Live reconfigurable

Live reconfigurable in this case means the possibility to modify the service parameters or
individual service components of the services and to add or remove service components during
runtime. This feature is not possible with the single component and the parallel component
approach. There the service has to be compiled with all required elements and they are not
changeable once the service has been deployed. The orchestration and choreography concepts
allow the reconfiguration of the running service. Parameters can be modified and service
components can be added or removed while the components are deployed.

3. CONCLUSION
With all of the presented approaches it is possible to develop value-added services. Also with
the single component concept, services can be created, but without support of parallel execution.
For the single and the parallel component concepts prototypical implementations already exists
and for the orchestration and choreography concepts a prototype is in development [10]. With

 176

the new prototype other criteria such as performance issues can be evaluated. The choreography
concept and the orchestration concept offer the most advantages. With a combination of the last
two approaches, complex value-added services can be generated from fine grained service
components at runtime. Also it is possible to dynamically reconfigure and expand the service by
a rearrangement or the reconfiguration of the service components. With the presented
approaches the concepts of service composition can be made available within JSLEE [10]. This
allows an enhanced service creation and management framework on top of JSLEE. A prototype
for this advanced framework is in development. This prototype will offer all the advantages
from the choreography and the orchestration concepts and in addition, an advanced service
management system, and a marketplace which offers service component sets, resource adaptors,
and also value-added services. To support the reconfiguration and reorganisation of services at
runtime, a web-based live GUI will also be part of the prototype.

ACKNOWLEDGEMENTS
The research project providing the basis for this publication was partially funded by the Federal
Ministry of Education and Research (BMBF) of the Federal Republic of Germany under grant
number 1724B09. The authors of this publication are in charge of its content.

REFERENCES
[1] D. Jordan at all. (2007) “Web Services Business Process Execution Language Version 2.0,”

OASIS.

[2] SPICE Project Web Site (2011, February): http://www.ist-spice.org.

[3] TeamCom Project Web Site (2011, February): http://www.ecs.fh-osnabrueck.de/teamcom.html.

[4] Ferry, D. (2008) “JAIN SLEE (JSLEE) 1.1 Specification, Final Release,” OpenCloud, Sun.

[5] Eichelmann, T. at all., (2008) “Creation of value added services in NGN with BPEL,” In Proc.
SEIN 2008, pp186–193.

[6] Lehmann, A. at all., (2009) “TeamCom: A Service Creation Platform for Next Generation
Networks,” In Proc. ICIW 2009, on ICIW CD.

[7] Eichelmann, T. at all., (2009) “Support of parallel BPEL activities for the TeamCom Service
Creation Platform for Next Generation Networks,” In Proc. SEIN 2009, 2009, pp69–80.

[8] Eichelmann, T. at all., (2010) “Enhanced Concept of the TeamCom SCE for Automated
Generated Services Based on JSLEE,” In Proc. INC 2010, pp75-84.

[9] Juric, M.B., Mathew B. & Sarang, P. (2006) “Business Process Execution Language for Web
Services, Second Edition,” Packt Publishing.

[10] Steinheimer, M. (2011) “Entwicklung und Bewertung von Architekturansätzen für die
Kombination von feingranularen Servicekomponenten zu Mehrwertdiensten,” Master Thesis,
University of Applied Sciences Darmstadt.

