
A New Service Description for Communication

Services as Basis for Automated Functional Testing

P. Wacht, U. Trick

Research Group for Telecommunication Networks

University of Applied Sciences Frankfurt

Frankfurt, Germany

{wacht, trick}@e-technik.org

W. Fuhrmann

University of Applied Sciences Darmstadt

Darmstadt, Germany

w.fuhrmann@fbi.h-da.de

P. Wacht, B. Ghita

Centre for Security, Communications, and Network research

University of Plymouth

Plymouth, United Kingdom

{patrick.wacht, bogdan.ghita}@plymouth.ac.uk

Abstract—The advances in the telecommunication domain to

support complex communication services has resulted in a need

for a new approach to automatically verify that the

communication services meet the demands of the customers. This

paper presents a concept for automated functional testing by

means of a novel test framework. Within the framework, the tests

are automatically derived from a proposed new sort of

requirements specification for communication services, the

Service Description, and afterwards generated by means of

predefined test modules. Finally, the test cases are executed

against the System under Test, the communication service.

Keywords—automated functional testing; communication

services; requirements specification; test framework; testing

methodology

I. INTRODUCTION

In the telecommunication domain, network operators and
service providers aim for fast, easy and cost-efficient
provisioning of value-added communication services. A fast
transition from concept to market product and low price of new
communication services is necessary due to the increasing
competition in the telecommunication industry. The sum of
these demands leads to reducing complete and sufficient
functional testing which has a bad impact on the quality of the
service. Moreover, functional testing procedures have to be
executed consequently before the delivering of a
communication service to a customer because the service
provider has to assure that the communication service is
executed properly and according to the specified requirements
and that the communication service may not cause undesired
behaviour within the provider’s service environment.

In order to avoid these problems, the whole test
development cycle specifically for communication services has
to be improved. This starts with the requirements analysis
which is usually standard Unified Modelling Language (UML)
use case design [1; 2], with mostly natural language-based
descriptions. This often leads to a lack of clarity as it is difficult

to use language in a precise and unambiguous way. Besides the
requirements analysis, the service testing is oftentimes
manually done by test developers who gain their knowledge
about a service’s functionality from the natural language-based
requirements specification. The test developer has to spend a
significant amount of time on test case design, test data
selection, and test evaluation.

In this paper, we propose a new test framework in order to
do automatic functional testing of communication services. The
foundation of the testing methodology is based on the
definition of a new sort of requirements specification for
communication services, the Service Description. After the
Service Description is specified for a new communication
service, it is parsed by a special test framework artifact which
reads out the significant content and generates a formal
behaviour model by composing predefined parameterised test
modules. From the behaviour model, the functional test cases
are derived and generated into executable TTCN-3 test cases
which are subsequently executed against the communication
service within a TTCN-3 test execution environment.

The remainder of this paper is structured as follows: the
related work is presented in section 2. Section 3 introduces the
novel architecture of the test framework and describes the
testing methodology. Afterwards, section 4 discusses the
demands on a new sort of requirements specifications for
communication services and introduces the proposed Service
Description. A simplified example of a communication service
specification using the Service Description is discussed in
section 5 and section 6 concludes the paper.

II. RELATED WORK

Our survey of the related literature shows that many
different methodologies have been developed in the field of
automated testing, mostly in the field of process-based systems.
These approaches either generate test paths directly from code,
based on data and control flow information [3; 4], or translate
the code into formal specification languages like Petri nets [5],

[6], to perform the model checking and test derivation. A major
disadvantage of these approaches is that the tests cannot detect
the deviations from the functional specifications as the tests are
directly derived from the code.

A series of methods is proposed in [7] to capture
requirements and then manually transform them into
conceptual models composed of object models (e.g. class
diagrams), dynamic models (e.g. state machines and sequence
diagrams) and functional diagrams. The authors introduce a set
of techniques for users to precisely specify requirements and
describe rules how the users can derive conceptual models
from these requirements. The paper [7] does not mention a
complete transformation method. Besides, the effort for a
human to define both requirements and conceptual models
seems to be very high.

An approach to generate finite state machines from use
cases in restricted Natural Language (NL) is proposed in [8].
The approach needs the existence of a domain model which
serves two purposes: a lexicon for the NL analysis of use cases,
and the structural basis of the state transition graphs being
generated. The domain model acts as the lexicon for NL
analysis of the use cases because the model elements of the
domain model are used to document the use cases. It is
imaginable that an enormous user effort is needed to obtain a
domain model containing classes, associations, and operations
which are indispensable for generating state machines. There is
no proof that the restricted NL is sufficient to describe the use
cases.Yet no case study is presented to evaluate the approach.

In [9], the authors use a behaviour engineering
methodology to formalise and validate a requirements
specification and extend it with appropriate test activities. It is
shown how testing information may be weaved into behaviour
trees by identifying the system’s boundaries and the definition
of test action. The approach lacks the information of how tests
are generated and executed but it seems necessary to transform
the behaviour trees in state machines.

The generation of test cases from complete system
requirements models is discussed in [10]. The model is
described in a requirements specification language (SpecTRM-
RL) which is based on a formal state machine model.
Nevertheless, according to the authors, the notation is simple to
read and understand for non-experts. However, the approach
allows the definition of requirements models in different
degrees of abstraction. Besides, the generation of tests and their
execution is indeed discussed but not further defined.

A tool-based methodology to model-driven system testing
of service-oriented systems is introduced in [11]. Additionally,
it provides full traceability between the requirements, the
system and test model. This aspect, however, leads to an
amount of work for the human as the requirements have to be
specified, the system model has to be defined as well as the test
model. For the execution of test cases, the outdated
technologies RMI (Remote Method Invocation) and CORBA
(Common Object Request Broker Architecture) have been
applied.

Whittle and Schumann proposed an approach [12] to
automatically generate UML state machines from UML

sequence diagrams. However, widespread modeling techniques
like UML are too generic and lack the formalism required for
domain modelling such as the requirements modeling of
communication services.

Most approaches described in literature lack the definition
of a testing methodology from the definition of the
requirements until generation and subsequent evaluation of the
functional tests. There is no discussed framework covering
these steps specifically for communication services. Besides
the standard way of defining requirements of communication
services through UML use case design no further approaches
are discusses so far.

III. TEST FRAMEWORK ARCHITECTURE

This section provides an overview of the underlying
components and principles within the developed test
framework.

Fig. 1 shows the artifacts of the test framework. The
workflow of the testing methodology is triggered by a Test
Developer whose role is the compilation of the Service
Description. The Service Description is a new sort of
requirements specification for communication services for the
purpose of specification-based functional testing. It contains
static architectural definitions describing the participating roles
involved in the consumption of a communication service and
their relationships as well as dynamic behavioural definitions
specifying use-case related requirements on the part of the
communication service. In the compilation phase, the Test
Developer has to follow a well-defined guideline to define a
Service Description for a communication service. Within the
testing methodology this is the only task being carried out by a
human, the subsequent process performs automatically. A more
detailed introduction regarding the Service Description will
follow in section 4.

Fig. 1. Test framework artifacts and methodology

According to Fig. 1, the Service Description will be
delivered to a very significant component within the testing

methodology, the Automatic Composition Engine (ACE). The
main task of the ACE is the generation of a system model, the
Behaviour Model, which is a complete formal model or rather
Extended Finite State Machine (EFSM) describing the desired
and possible behaviour of the specified communication service.

In order to generate the Behaviour Model, the ACE first
parses the architectural definitions from the Service
Description and forwards them to the Test Configuration Unit
(TCU). The TCU thereupon extracts the relevant information
for the Test Execution Environment (TEE) such as the System
under Test (SUT) addressability, the participating test
components and the data structures being exchanged between
SUT and test system.

The ACE parses the behavioural part of the Service
Description and identifies the participating roles within the
specified requirements to select suitable test modules from the
so-called Test Modules Repository (TMR). The TMR is a
database containing predefined modular EFSMs, so-called test
modules, which cover typical communication service
characteristics such as sequences of multimedia protocols like
SIP (Session Initiation Protocol) or RTP (Real-Time Transport
Protocol) and other important protocols, e.g. HTTP (Hypertext
Transfer Protocol). The test modules usually define a protocol-
specific behaviour of a certain use case, e.g. the sending of an
instant message by using the SIP protocol, and cover both
standard behaviour as well as possible alternative behaviour
like timeouts. To sum it up, the test modules define the
standard compliant behaviour of a certain use case.
Additionally, the test modules are parameterised in order to
configure the test data.

After selecting the appropriate test modules from the TMR,
the ACE connects to the Test Data Pool, a database containing
collections of test data templates for each test module within
the TMR. Then the ACE chooses the adequate test data
templates and the parameters from the Service Description are
included. After that, the ACE starts with the composition of the
test modules. Each test module has interfaces which are linked
to the existing states within the underlying EFSM of a test
module. If two test modules are to be combined, the originating
test module and the destination test module are connected with
a transition between their interfaces. The task of the ACE is to
realise the connection according to the use-case related
information within the Service Description. Obviously, not all
the interfaces within one test module has to be operated, it
depends on the descriptions. However, at least the interfaces
within the start state and the end state of a test module have to
be activated excepting the first and the last test module to be
composed.

After the composition of the chosen test modules is fulfilled
the dependencies of the parameterisations for each test module
have to be dissolved. This is necessary in order to reuse and
change parameter values being defined in one test module for
the other test modules within the composed model. This is
important if certain parameter values defined in test module A
have to be reused in test module B. This could be for instance a
SIP URI which was defined in A and has to be reused in B.

As mentioned before, the result of the composition is the
Behaviour Model which is then delivered to the Test Case

Generator (TCG). The TCG contains a test case finder which
uses an algorithm to enable the derivation of abstract test cases
from the Behaviour Model. This algorithm optimises the
traversal of the EFSM by combining depth-first search and
breadth-first search. After the extraction of the abstract test
cases, a test code generator translates them into executable test
cases by means of a special mapping concept which is
described in [13]. The executable test cases are defined in
TTCN-3 (Testing and Test Control Notation), a test scripting
language which was standardised by ETSI [14] and ITU-T [15;
16], and supports the modularised creation of test scenarios for
message and procedure based systems.

The final step of the methodology takes place within the
TEE which receives both the executable TTCN-3 test cases
from the TCG and the relevant information about the SUT and
the participating test components from the TCU. Based on the
information, the TEE selects the appropriate system adapter
and codecs. The system adapter [17] adapts the communication
of the TTCN-3 test system to the specific execution platform of
the SUT whereas the codec is responsible for the encoding and
decoding of TTCN-3 values into bitstrings so that the data can
be sent to the SUT. Finally, the system adapter and codecs are
added to the Test Suite and the generated TTCN-3 test cases
are executed against the SUT. A test log is written which
documents the test case execution and the reactions of the
SUT. The data is formatted and integrated into a Test Report to
demonstrate if all the tests were successful due to the defined
requirements specified in the Service Description. If there are
mismatches the whole process has to be verified, the SUT as
well as the Service Description.

IV. SERVICE DESCRIPTION

A well-defined requirements specification is the critical
component when it comes to functional testing as it represents
the foundation for every derived test case. Especially with
reference to the proposed test framework introduced in the last
section, several demands on the Service Description were
discussed.

A. Demands on the Service Description

The Service Description should meet some general
demands which are relevant for any kind of specification
document. First of all, the Service Description should be
complete and has to contain all the requirements which
describe exactly the desired behaviour of a communication
service. The specified requirements should be understandable
and not ambiguous. The Service Description should not contain
any contradictions and changes can be done without
difficulties. It should be machine-readable and interpretable so
that the ACE is able to parse the content.

Besides the general demands, the proposed test framework
requires some further specific demands with reference to the
artifacts within the testing methodology. The ACE for instance
requires the description of behavioural aspects which can be
described in terms of use-case related requirements. Each
requirement has to be traceable throughout the whole testing
process from its definition within the Service Description by
the Test Developer until the execution of the automatically

derived test cases. Therefore, a formal semantic relationship
between the requirements and test cases has to exist. Also, the
requirements have to contain information about the
participating roles so that the ACE can select the appropriate
test modules while parsing the Service Description. As the
requirements describe the specification of a communication
service they address a subset of the protocol-specific behaviour
defined in the test modules. Possible relations and
dependencies between requirements can lead to compositions
of test modules. Another important demand on the Service
Description is the support for applying the test data from the
Test Data Pool. Within the requirements it should be easily
possible to parameterise and address the test data sets.

Finally, with reference to the test configuration within the
Test Execution Environment, the Service Description has to
contain all the relevant information about the test architecture,
which is a representation of the structural aspects of the test
system, such as SUT information, test components and
required codecs.

B. Service Description structure

As mentioned in section 3, the proposed Service
Description is subdivided into architectural and behavioural
definitions. Besides, some further information is given. Fig. 2
illustrates the structure of the Service Description.

Fig. 2. Structure of the Service Description

The Service Description element is the root of every
instance of a requirements document. It contains the Service
ID, a unique identifier for the communication service to be
specified. This is an important attribute as it determines the
name of the test suite to be generated. The Prosa Description
contains an abstract description of the communication service’s
functionality. In the Roles attribute, all the participating users
who consume the communication service are listed. Roles
could be for instance Web Browsers or SIP Softphones. The
definition of the roles is the basis for the selection of the test

components within the test configuration. Further test
configuration properties are defined in the System Meta
Information containing SUT information in order to build up
the test configuration. Here, the service addressability is
defined such as the service URI, IP addresses and port
numbers. A predefined variable list is available to assure that
the relevant parameters are set. The Non-functional properties
contain non-functional requirements like costs.

A further important part of the Service Description is the
Requirement List which defines the behavioural part and
contains all the relevant requirements a communication service
has to fulfill. The specification of each requirement in the
Requirement List is well-defined by the following components
in Table I.

TABLE I. SPECIFICATION OF A REQUIREMENT

Component Description

Requirement ID Unique identifier for a requirement.

Requirement Goal
Prosa description of the requirement’s

target.

Precondition

Determination of depending flows within

other requirements that have to be carried

out before the Basic Flow of this
requirement can take place.

Participating Roles
List of the roles involved in this

requirement.

Communication
Interfaces

Definition of the relevant system side
communication interfaces.

Parameters
Determination of the required parameters

within this requirement.

Basic Flow

Description of the steps that have to be

taken to achieve the target of the

requirement.

Alternative Flows

Description of exceptional behaviour.

Each step within a Basic Flow can lead to

an Alternative Flow.

The significant part of a requirement is the use case

description of the Basic Flows and Alternative Flows. In
standard textual UML use case design, natural language-based
descriptions are used. There are many documented approaches
[18], where restriction rules for textual use case design are
applied to reduce the imprecision and incompleteness.
However, even if restricted vocabulary is used, formulation
oftentimes is confusing and error-prone. The larger a
requirements specification is the more problems arise
disproportionately with natural language-based specifications.
With reference to the testing methodology, the Basic Flows and
Alternative Flows, the descriptions should be machine-readable
so that the ACE can parse and interpret them. Therefore, a new
formal approach is required which enables the description of
behaviour flows and realises the reference to the test modules
within the TMR and the test data.

As an appropriate formal method the usage of a process
algebra notation has been found, the pi-calculus [19]. In
general, the pi-calculus is a simple language to specify
interactive message-passing programs. It provides
mathematical foundations of some modern workflow
languages like the Business Process Execution Language
(BPEL) and is more concise than automata, very expressive

and even easier to develop. However, the pi-calculus is so
minimal that it does not contain primitives such as numbers,
booleans, variables, functions, or even usual flow control
statements such as if-then-else constructions. The syntax just
consists of a set of prefixes and process expressions which is
illustrated in Table II.

TABLE II. BASIC PI-CALCULUS SYNTAX

Syntax Description

P ::= 0 Process P is a null process.

P | Q
Parallel composition of processes P and
Q.

!P Replication of process P.

´a<x>.P
x is sent along channel a, then process P
starts.

a(x).P
Channel a receives x, then process P

starts.

The mentioned limitations of pi-calculus may justify why it

has not been applied as a requirements specification language
for functional testing methodologies so far. Therefore, we
propose an applied pi-calculus language in order to describe the
Basic Flow and Alternative Flows within the requirements
properly. The conceptual idea was derived from [20]. In that
approach the grammar for processes is similar to the one in the
pi-calculus, except that messages can contain terms. In our
proposed pi-calculus, we reuse the ideas of terms to define flow
control statements, variable usage and method invocation.
Furthermore, we reuse the channels to express possible outputs
and inputs on the part of the system side communication
interfaces.

Our proposed enhancements of the pi-calculus syntax are
illustrated in Table III.

TABLE III. ENHANCED PI-CALCULUS SYNTAX

Syntax Description

if x == {value} then P else

Q

If the variable x contains the value the

process P starts otherwise process Q.

´a<httpServerresponse
(200)>

Through channel a, a 200 response is

sent from the communication interface

httpServer.

responsestatusCode=200
The attribute statusCode of the complex

variable response is set to the value 200.

The complex variables such as response within the
description of Table III are parameters which can be loaded
from the Test Data Pool. The arrow symbolises the access to
the attributes of the complex data structure. In standard
programming languages this would be the dot operator. As the
dot has a different meaning in pi-calculus, namely the
separation of process steps, the arrow is used in our approach.

With reference to the description of the requirements, each
Basic Flow and each Alternative Flow can be defined by one
pi-calculus process in the Service Description. Again, each
process contains n channels where each is representing the
communication between the communication service and the
components which are depending on the defined
communication interfaces. The mentioned enhancements of the

pi-calculus show that certain conditions can lead to different
behaviour which is specified through different following
processes.

In the following, an example of a communication service
specification with the Service Description will be described.

V. EXAMPLE

The example communication service being specified by the
Service Description is called Click-2-Instant-Message. The
service flow starts with a text message and a destination SIP
URI being typed in by a user on a website. By actuating a
button the message is sent via HTTP protocol to an application
server with the deployed Click-2-Instant-Message service.
Subsequently, the service sends a SIP Message containing the
text message from the website to the SIP phone with the stated
SIP URI.

The architectural part of the Service Description enables the
building of the test configuration and is illustrated in Table IV.

TABLE IV. EXAMPLE SERVICE DESCRIPTION ARCHITECTURAL PART

Service ID Click-2-Instant-Message

Prosa

Description

A website should deliver two input masks. The first

input mask should contain the address or telephone
number (SIP URI) of any participant and the

second one should carry any kind of text message.

A button should be integrated on the website.
When submitting it, the text included in the second

input mask should be transferred to the address that
was filled in the first input mask. If no text was

typed, the user should be informed with “No text

input” on the website. If the SIP URI was invalid
the user should be informed with “No valid SIP

URI”. If the transfer worked, a success message

should occur, “Message sent successfully”.

Roles Web Browser, SIP Softphone

System Meta

Information
ServiceURI: sip:click2IM@sip.de

Non-functional

properties
None

The defined roles leads to the fact that two test components
are required with one understanding the HTTP protocol (Web
Browser) and the other one understanding the SIP protocol
(Softphone). The SUT is reachable through the ServiceURI
which is specified in the System Meta Information.

Furthermore, the behavioural part of the Click-2-Instant-
Message Service Description contains one requirement. The
requirement determines amongst others the communication
interfaces which describe the communication channels from
the SUT to the test components. The declaration of the
communication interfaces automatically leads to the selection
of the test modules, in this example HTTP_Server and the
SIP_UAClient_MESSAGE. A more detailed description of the
structure of the test modules is described in [21]. Every test
module contains a set of parameters. The relevant ones for the
specified flows in the requirements have to be determined like
in Table V.

TABLE V. EXAMPLE SERVICE DESCRIPTION BEHAVIOURAL PART

Requirement

ID
1

Requirement

Goal

Initiator wants to send a text message from a website

to a SIP softphone.

Precondition None

Participating

Roles
Web Browser, SIP Softphone

Communicatio
n Interfaces

HTTP_Server [w]  channel a
SIP_UAClient_MESSAGE [s]  channel b

Parameters
[w]httpRequest; [w]httpResponse;

[s]sipRequestMessage; [s]sipResponse2xx_6xx

Basic Flow

P ::= a([w]httpRequest(text, targetURI)).
if text == NULL then Q else.

if isValidURI(targetURI) == false then R else.
´b<[s]sipRequestMessage(targetURI, text)>.

b([s]sipResponse2xx_6xx(200)).

´a<[w]httpResponse(200, “Message sent
successfully”)>.0

Alternative

Flow 1
Q ::= ´a<[w]httpResponse(200, “No text input”)>.0

Alternative
Flow 2

R ::= ´a<[w]httpResponse(200, “No valid SIP
URI”)>.0

The behavioural flows are described in the proposed pi-
calculus syntax. The Basic Flow specifies the process P with
an incoming HTTP request over the channel a containing the
parameters text and targetURI. Then the content of both
parameters is checked. If text does not have content, process Q
is triggered, otherwise if targetURI contains an invalid SIP
URI, process R is triggered. If both parameters are correct, a
SIP Message with the text is expected to be sent over the SIP
channel b and acknowledged. At the end, a HTTP response is
sent over channel a to inform that the transfer was successful.
The sum of flow descriptions in this example define a
specification of a service which describes a certain subset of
the flows being contained in the test modules.

VI. CONCLUSION

Automated functional testing of communication services
directly from a requirements specification requires its
understandability, completeness and machine-readability. Such
a requirements specification, the Service Description, was
introduced and exemplified in this paper. Besides, its
significance was discussed with reference to the proposed test
framework.

The presented approach empowers network operator and
service providers to deliver high quality communication
services in a cost and time optimised way to their customers.
The services undergo a continuous testing procedure based on
a new functional testing methodology.

REFERENCES

[1] O. Ryndina, P. Kritzinger, “Improving requirements specification for
communication services with formalised use case models”, Proceedings
of the Southern African Telecommunication Networks and Applications
Conference (SATNAC 2004), Spier Wine Estate, Western Cape, South
Africa, September 2004.

[2] A. Eberlein, M. Crowther, F. Halsall, “Development of new
telecommunications services using an expert system”, BT Technology
Journal, vol. 15, pp. 2137-222, 1997.

[3] J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang, “BPEL4WS Unit Testing:
Test Case Generation Using a Concurrent Path Analysis Approach”,
Proceedings of the Seventeenth International Symposium on Software
Reliability Engineering (ISSRE 2006), Raleigh, North Carolina, USA,
November 2006.

[4] Y. Yuan, Z. Li, and W. Sun, “A graph-search based approach to bpel4ws
test generation”, Proceedings of the International Conference on
Software Engineering Advances, Papeete, Tahiti, French Polynesia,
October 2006.

[5] J. Garcia-Fanjul, J. Tuya, and C. de la Riva, “Generating test cases
specifications for BPEL compositions of web services using SPIN”,
Proceedings of the International Workshop on Web Services: Modeling
and Testing, Palermo, Italy, June 2006.

[6] Y. Zheng, J. Zhou, and P. Krause, “A model checking based test case
generation framework for web services”, Proceedings of the
International Conference on Information Technology (ITNG 2007), Las
Vegas, Nevada, USA, April 2007.

[7] E. Insfrán, O. Pastor, R. Wieringa, “Requirements Engineering-Based
Conceptual Modelling”, Requirements Engineering Journal, vol. 7, pp.
61-72, June 2002.

[8] S. Somé, “An approach for the synthesis of state transition graphs from
use cases”, CSREA Press, vol. 1, pp. 456-462, 2003.

[9] M.-F. Wendland, I. Schieferdecker, A. Vouffo-Feudjio, “Requirements-
driven testing with behaviour trees”, Proceedings of the Fourth
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW 11), Berlin, Germany, March 2013.

[10] K. Kelley, “Automated Test Case Generation from Correct and
Complete System Requirements Models”, Proceedings of the IEEE
Aerospace Conference, Big Sky, Montana, USA, March 2009.

[11] M. Felderer, P. Zech, F. Fiedler, R. Breu, “A Tool-based methodology
for System Testing of Service-Oriented Systems”, Proceedings of the
Second International Conference on Advances in System Testing and
Validation Lifecycle (VALID 2010), Nice, France, August 2010.

[12] J. Whittle, J. Schumann, “Generating statechart designs from scenarios”,
Proceedings of the Twentysecond International Conference on Software
Engineering (ICSE 2000), Limerick, Ireland, June 2000.

[13] P. Wacht, T. Eichelmann, A. Lehmann, and U. Trick, “A New Approach
to Design Graphically Functional Tests for Communication Services”,
Proceedings of the Fourth IFIP International Conference on New
Technologies, Mobility and Security (NTMS 2011), Paris, France,
February 2011.

[14] EG 201 873-1: Methods for Testing and Specification (MTS): The
Testing and Test Control Notation version 3; Part 1; TTCN-3 Core
Language, ETSI, 2008.

[15] Recommendation Z.140: The Tree and Tabular Combined Notation
version 3 (TTCN-3): Core Language. ITU-T, 2001.

[16] Recommendation Z.141: The Tree and Tabular Combined Notation
version 3 (TTCN-3): Tabular Presentation Format. ITU-T, 2001.

[17] S. Blom et al., “TTCN-3 for Distributed Testing Embedded Software”,
Proceedings of the Sixth International Andrei Ershov Memorial
Conference on Perspectives of Systems Informatics (PSI 2006), Berlin,
Germany, 2007.

[18] T. Yue, S. Ali, L. Briand, “Automated Transition from Use Cases to
UML State Machines to Support State-based Testing”, Proceedings of
the Seventh European Conference on Modelling Foundations and
Applications (ECMFA 2011), Birmingham, United Kingdom, June
2011.

[19] D. Sangiorgi, “The Pi-Calculus: A Theory of Mobile Processes”,
Cambridge University Press, 2008.

[20] M. Abadi, C. Fournet, “Mobile Values, New Names, and Secure
Communication”, Proceedings of the Twentyeighth ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
London, United Kingdom, January 2001

[21] P.Wacht, T. Eichelmann, A. Lehmann, U. Trick, “A New Approach to
Design Graphically Functional Tests for Communication Services”,
Proceedings of the Fourth IFIP International Conference on New
Technologies, Mobility and Security (NTMS 2011), Paris, France,
February 2011

