
A Novel Test Creation Framework for Value-Added
Services

Patrick Wacht and Ulrich Trick
Research Group for Telekommunication Networks

Frankfurt University of Applied Sciences
Frankfurt, Germany

Email: {wacht, trick}@e-technik.org

Abstract—Recent years have witnessed that standard telecom-
munication services evolved more and more to complex value-
added services. This fact is accompanied by a change of ser-
vice characteristics as new services are designed to fulfil the
customer’s demands instead of just focusing on technologies
and protocols. Besides, service providers have to consider a
fast transition from concept to market product as well as low
prices for new services due to the increasing competition in
the telecommunication industry. So, there is an urgent need
for effective test solutions that can be integrated into current
value-added service development life-cycles. This paper proposes
a novel framework for functional testing which is based on a
new sort of specification for value-added services, the Service
Test Description (STD). Combined with the properties of pre-
defined reusable test modules based on Statecharts notation, an
algorithm parses STD instances and automatically generates so-
called behaviour models from which functional test cases can be
derived, generated and subsequently executed against the value-
added service. Prototypical implementations of the concept have
confirmed its usefulness and effectiveness.

Index Terms—automated functional testing, value-added ser-
vices, test automation framework

I. INTRODUCTION

The demand for advanced value-added services in the
telecommunication domain has increased over the last years.
Major challenges arise especially for service providers who
have to provide a fast transition from concept to market
product and who have to offer low prices for their product
to satisfy their customers. In order to face the situation,
service providers have integrated so-called Service Creation
Environments in their Service Delivery Platforms (SDP) to
enable service developers to rapidly create new and individ-
ual value-added services and bring them to market. Current
SCEs [1] have proven to work properly but the functional
quality of the services relies only on the skills of the service
developer. This lack of support for functional testing requires
a novel framework to enable a consequent testing of value-
added services before their deployment and provision. Service
providers can then assure their customers of a proper execution
of the delivered services and that they perform according to
the specified requirements.

The related testing approaches in literature are not sufficient
to fulfil the requirements on a novel test framework. In fact,
most of them follow a model-based strategy [2] based on
finite state machines or extended finite state machines. Test

developers need to design complex formal models, an error-
prone and inefficient procedure. Oftentimes, the integrated
methods to derive test cases from the models are rather
inefficient such as in [3] and [4]. This leads to an enormous
amount of test cases which cannot be executed against a
System Under Test (SUT) within a reasonable amount of time.
Finally, a test framework should include the test execution of
the generated test cases and should provide a test report to
document the verdicts of the test case execution.

This paper proposes a novel so-called Test Creation Frame-
work (TCF) which can be included in given SDPs and which
allows test developers to automatically create and execute test
cases. The creation of tests is done by defining a novel sort
of description language specifically for value-added services,
the Service Test Description (STD). The structure of the STD
hides the complexity of underlying existing Statecharts-based
formal models and includes information to realise the mapping
of requirements and generated test cases.

The remainder of this paper is structured as follows: section
II introduces the architecture of the proposed TCF. Section III
deals with the structure of the STD and shows a simplified
example STD instance. Afterwards, section IV discusses the
aspects of reusability within the TCF and the underlying
composition algorithm. Section V briefly describes the test
case generation and, finally, section VI concludes with an
evaluation.

II. TEST CREATION FRAMEWORK ARCHITECTURE

This section provides an overview of the proposed TCF.
Fig. 1 illustrates its architecture components as well as the
workflow of the methodology starting with the test developer
who can access the Test Modules Environment (TME) and the
Test Framework User Terminal (TFUT).

The TME enables the test developer to create, modify and
erase so-called reusable test modules which are based on
Statecharts and describe typical service characteristics such as
sequences of multimedia protocols like SIP (Session Initiation
Protocol) or HTTP (Hypertext Transfer Protocol). The test
modules usually define a protocol-specific behaviour of a
certain use case, e.g. the sending of an instant message by
using SIP, and cover both standard behaviour as well as
possible alternative behaviour. The test modules themselves
are stored within a database, the Test Modules Repository

Test Framework User
Terminal (TFUT)

Test Modules
Environment

(TME)

Test Data Pool
(TDP)

Test Modules
Repository

(TMR)

Automatic
Composition Engine

(ACE)

Test Configuration
Unit (TCU)

Test Case
Derivation Unit (TCDU)

Test Suite Generator (TSG)

Test Code Generator (TCG) Test Suite Builder (TSB)

Test Execution Environment (TEE)

Service Test
Description

Behaviour
Models

Abstract Test
Suite

Executable Test
Suite

Test Developer

Test Report

Fig. 1. Test Creation Framework architecture

(TMR) whereas the related test data is separately stored within
the Test Data Pool. This has been established intentionally
because the existing test data templates can then be used for
diverse reusable test modules.

The TFUT (see Fig. 1) provides a graphical user interface
for the test developer to specify instances of the STD. It also
enables him to trigger a fully automated process which results
in the execution of generated test cases against the relevant
value-added service. In principle, the STD comprises elements
of test specifications and service specifications and contains
both architectural as well as behavioural content. The overall
structure of the STD has been published in [5] and will be
introduced in section III.

On the basis of an STD instance, the Automatic Composi-
tion Engine (ACE) (see Fig. 1) generates so-called behaviour
models, complete formal models based on Statecharts notation
which describe the desired possible behaviour of the specified
value-added service. The process includes the automated selec-
tion of identified reusable test modules and their composition
to more complex models as well as the automated instantiation
of test data templates. For each specified requirement of a
value-added service, one behaviour model will be generated.
This enables a direct mapping from specified requirements
to the formal model and automatically, a mapping from
requirements to test cases.

The Test Case Derivation Unit (TCDU) (see Fig. 1) includes
a test case finder which uses an algorithm and follows selected
coverage criteria to enable the derivation of abstract test
cases from the behaviour models. Depending on the selected
coverage criterion and the selected reusable test modules, the
amount of test cases differs significantly. The output of the
TCDU is an abstract test suite which includes abstract test
cases for each behaviour model.

The Test Suite Generator (TSG) (see Fig. 1) creates a valid
and executable test suite that can be imported into a TTCN-3
(Testing and Test Control Notation version 3) test execution

environment. To achieve this, the abstract test cases have to be
translated into TTCN-3 test cases by means of the Test Code
Generator (TCG). The Test Suite Builder (TSB) will enhance
the TTCN-3 code with specific test modules and includes also
the configuration of TTCN-3 codecs and adapters. Further-
more, the TSB includes the TTCN-3 compilations as well as
the Java compilation in order to generate an executable test
suite.

The execution of all the test cases within the executable
test suite takes place within the Test Execution Environment
(TEE). Afterwards, a test report is generated which includes
information about successful and failed test cases.

The architecture of the TCF contains several important
components which will be investigated in the following. The
structure of the STD is part of the upcoming section.

III. SERVICE TEST DESCRIPTION LANGUAGE

The Service Test Description (STD) is the most relevant
component of the proposed TCF as it specifies the basis on
which test cases are later on generated. As mentioned before,
the STD contains both service-specific and test-specific prop-
erties and can be seen as a combination of service specification
defining service-related information and behaviour, and a test
specification including the determination of test components
and test data.

The structure of the STD is displayed in Fig. 2. It is sub-
divided into the architectural and the behavioural perspective.
This principle has been derived from the concepts of Unified
Test Modeling Language [6] and UML 2.0 Testing Profile [7].

The architectural perspective includes general information
about the value-added service such as its “Service ID”, a
unique identifier. The “Service ID” is important in order to
differentiate between parallel projects the test developer is
working on. The “Prose Description” documents the value-
added services. It should be brief and concise but it does not
play a role in the formal processing. The “Roles” field lists the

Service Test
Description

Service ID

Prose Description

Roles

System Meta
Information

Requirement List

Requirement

Requirement ID

Reguirement
Goal

Precondition

Participating
Roles

Communication
Interfaces

Parameters

Basic Flow

Non-functional
Properties

Alternative
Flows

Architectural perspective Behavioural perspective

Fig. 2. Structure of Service Test Description

participating entities that communicate with the value-added
service by exchanging signals and data on the one hand and
that are external to the service environment (e.g. application
server) on the other hand. The “Roles” usually represent
specific external hardware or software that can interact with
the service via communication protocols such as SIP and
HTTP. Regarding the TCF, the “Roles” play a very relevant
role as, based on their determination, sets of predefined
reusable test modules for the test execution environment can be
automatically derived and afterwards instantiated. An example
for a “Role” can be a SIP phone (or rather VoIP phone) or
a web browser. The “System Meta Information” field in the
architectural perspective contains important parameters of the
SUT such as its addressability (service URI, IP addresses and
transport protocols). The final field “Non-functional Proper-
ties” allows the test developer to capture information that is
important for the customer such as performance and usability.
It does not describe specific functions.

The behavioural perspective of the STD comprises a list
of requirements to actually specify the functionality a value-
added service has to accomplish. One “Requirement” as part
of the STD defines one function of a service and generally
includes a set of inputs, the relevant behaviour as well as
expected outputs. Each “Requirement” specified in the be-
havioural perspective contains a “Requirement ID”, a unique
identifier. It allows to address the specific “Requirement”
within the specification, e.g. as dependency within other “Re-
quirements”. The “Requirement Goal” contains in a very short
natural language-based prose text the main objective of the
corresponding “Requirement”. Within the “Precondition” field,
the statements indicate what has to have happened before the
function of the current “Requirement” is activated. Through
this field, the dependencies between “Requirements” can be
determined. The architectural perspective already included the
“Roles” field which holds the relevant participating entities
to consume the service. In contrast, the “Participating Roles”
field only contains selected “Roles” from the architectural
perspective that are specifically playing a role in the current
“Requirement”. The “Communication Interfaces” (CI) field
contains the most relevant information regarding the aspect of
reusability in the proposed TCF. In principle, the CIs represent
the points of interaction between the value-added service and
the participating entities which are specified in the “Participat-
ing Roles” field. A “Role” provides a potential functionality
that can be applied by the SUT when it communicates with the
specific “Role”. The complete scope of potential functionality
is represented by all CIs that are assigned to that “Role”.
Considering a SIP phone as an example “Role”, six different
CIs have been identified on the side of the SUT. Four of the
CIs are derived from the transaction state machines specified
in the SIP standard RFC 3261 [8]. They define the handling of
messages being initially sent from the SUT to the SIP phone
(either “SIP UAC INVITE” for sending INVITE requests or
“SIP UAC non-INVITE” for sending any type of SIP request
apart from INVITE requests) or from the SIP phone to the SUT
(either “SIP UAS INVITE” for receiving INVITE requests or

“SIP UAS non-INVITE” for receiving any type of SIP request
apart from INVITE requests). Besides these CIs for the SIP
phone, there are also two RTP CIs, “RTP Source” and “RTP
Sink”.

Regarding the concept of reusability, each CI specified in
the STD can be assigned to a predefined reusable test module
which is stored in the TMR (see Fig. 1). The next field within
a “Requirement”, the “Parameters”, are closely linked to the
specified CIs and accordingly to the reusable test modules.
Each test module includes variables that are instantiated from
abstract data types which represent communication protocol
messages (e.g. SIP requests and SIP responses). Through the
“Parameters” field, each data field within a variable based
on an abstract data type can be parameterised. The principle
of the parameterisation will be demonstrated by means of
an example. The “Basic Flow” and the “Alternative Flows”
are the final fields within a “Requirement”. In principle, the
“Basic Flow” contains the description of steps that have to
be taken to achieve the main target of the “Requirement”.
Within the steps of the “Basic Flow”, possible alternative
behaviour can occur. The effects of the alternative behaviour
can be specified by means of the “Alternative Flows”. The-
oretically, a “Requirement” can contain an infinite number
of “Alternative Flows” but it will always contain only one
“Basic Flow”. As appropriate foundation of a language being
able to specify the steps within the flows, the pi-calculus has
been chosen. In principle, the pi-calculus can be seen as a
model of communication systems which enables to express
processes with changing structure. One major benefit of pi-
calculus is the simple language it is based on to specify
interactive message-passing programs. The language is also
very expressive. Through the syntax of pi-calculus, processes
and channels can be represented. A process is an abstraction
of an independent thread of control whereas a channel is an
abstraction of the communication link between two processes.
Interaction between processes is enabled by sending and
receiving messages over the channels. To apply the pi-calculus
for the flow descriptions, the concept had to be reconciled by
means of minor enhancements. Firstly, the names being sent
and received over channels are substituted by terms. Such
terms are placeholders for variables or even functions that
expect input parameters and of course return a value to be
either sent or received.

In order to illustrate the concept, a sample STD specification
is discussed in the following. Therefore, a simple chat service
is consulted, especially the exchanging of instant messages
between participants. An architectural perspective of such a
service is illustrated in Table I. Here, the “Service ID” is set
and the “Prose Description” describes the main functionality
the sample service has to deliver. Two different “Roles”
have been identified for the service, the “[sender]” and the
“[recipient]”. Both “Roles” are acting as SIP phones. As the
names of the “Roles” states, the “[sender]” is the initiator
of the instant message whereas the “[recipient]” actually re-
ceives the message. Further information regarding the service
addressability (“ServiceURI”) and the used transport protocol

TABLE I
ARCHITECTURAL PERSPECTIVE OF CHAT SERVICE

Service ID Chat Service

Prose
Description

A chat communication should be provided. The
service users are able to log into the system and
log out again. While being logged in, the service
user can enter chat rooms and leave chat rooms
again. The service user can also send textual chat
messages.

Roles SIP phone: [sender]
SIP phone: [recipient]

System Meta
Information

ServiceURI: sip:chatservice@vas.de
Protocol: UDP

Non-functional
Properties

None

(“UDP”) are specified in the “System Meta Information” field.
”Non-functional Properties” are not specified for the sample
chat service.

The behavioural perspective in Table II includes the spec-
ification of one “Requirement” with the unique identifier
“Req03”. Furthermore, the “Requirement Goal” is described.
The “Precondition” field contains the value “Req02”. Although
this “Requirement” is not determined in the example, the
specified behaviour within its respective “Basic Flow” has to

TABLE II
BEHAVIOURAL PERSPECTIVE OF CHAT SERVICE

Requirement ID Req03

Requirement
Goal

Service User [sender] sends a text message to
another Service User [recipient] and gets informed
whether the transmission was successful.

Precondition Req02

Participating
Roles

SIP phone: [sender]
SIP phone: [recipient]

Communication
Interfaces

SIP UAS non-INVITE: [sender1] ⇒ channel a
SIP UAC non-INVITE: [sender2] ⇒ channel b
SIP UAC non-INVITE: [recipient1] ⇒ channel c

Parameters var initMsg = [sender1] ⇒ r Request;
var forwMsg = [recipient1] ⇒ s Request;
var okMsg = [sender2] ⇒ s Request;
var errorMsg = [sender2] ⇒ s Request;
timer t1 = [recipient1] ⇒ timerF;

initMsg = {(Method, “MESSAGE”), (Text,
“Hello Bob!”)}
forwMsg = {(Method, “MESSAGE”), (Text,
initMsg.Text)}
okMsg = {(Method, “MESSAGE”), (Text,
“Ok!”)}
errorMsg = {(Method, “MESSAGE”), (Text,
“Message not received!”)}

Basic Flow P ::=
a(initMsg).
c<forwMsg>.
if(t1.timeout) then Q else.
b<okMsg>.
0

Alternative Flow
(AF1)

Q ::=
b<errorMsg>.
0

happen before the “Basic Flow” of “Req03” begins.
In this example (see Table II), “Req02” could indicate the

entering of both “Participating Roles” in the same chat room to
be able to exchange messages. The “Requirement” identifies
three different CIs. Every CI definition includes the type of
CI (e.g. “SIP UAS non-INVITE”), the “Participating Role”
it belongs to as well as a channel identifier. The channel
stands for the actual communication channel between the SUT
and the “Roles” as external entities. In the example, the SUT
requires two channels “a” and “b” to communicate with the
initial sender of the text message. In channel “a”, the SUT
is acting as SIP UAS whereas in channel “b”, it is acting
as SIP UAC. Regarding the recipient of the text message,
the SUT only requires one channel “c” where it is acting
as SIP UAC. The “Parameters” field includes the definition
of several variables all representing SIP MESSAGEs, either
being sent from the sender to the SUT (“initMsg”), from the
SUT to the sender (“okMsg”, “errorMsg”) or from the SUT
to the recipient (“forwMsg”). Additionally, the “timerF” of
the “SIP UAC non-INVITE” CI is defined. Subsequently, the
“Basic Flow” is determined. Each process in a pi-calculus
description has to have a unique identifier (here: “P”). The
steps within a process are separated through the “.” operator.
Each process step includes one of the specified channels as
well as a parameter. The sort of brackets determines whether
the SUT receives a message over a specific channel (“()”)
or whether it send a message (“< >”). In the “Basic Flow”,
it initially denotes the SUT to receive the SIP MESSAGE
“initMsg” over channel “a” and then consequently sends the
SIP MESSAGE “forwMsg” over channel “c”. In the next step,
the state of the timer “t1” is checked. If it has not timed out
(if-else-then condition), the SUT sends out the SIP MESSAGE
“okMsg” over channel “b” and the “Basic Flow” terminates
afterwards with the “0” step. Otherwise, if the timer has timed
out, the “Alternative Flow” is activated. Here, a different SIP
MESSAGE “errorMsg” is sent by the SUT over channel “b”.
Then, also the “Alternative Flow” terminates.

IV. REUSABLE TEST MODULES AND BEHAVIOUR MODEL
GENERATION

Each reusable test module is defined within a hierarchical
OR-state in Statecharts notation. For each CI specified in
the STD, there is an existing reusable test module which is
either classified as client core (UAC) or server core (UAS).
This classification determines in which role the SUT is acting
towards the participating entities. Client core reusable test
modules always specify outgoing request types and incoming
response types whereas server core reusable test modules
specify incoming request types and outgoing response types.
For the SIP protocol, two sever core reusable test modules
have been identified (“SIP UAS non-INVITE” and “SIP UAS
INVITE”) as well as two client core reusable test modules
(“SIP UAC non-INVITE” and “SIP UAC INVITE”).

Fig. 3 illustrates the “SIP UAC non-INVITE” test module
as example. It consists of states and transitions which again
can contain events and actions. In fact, the events as well

SIP UAC non-INVITE

Start

Trying

entry: timerE.start

Proceeding

entry: timerE.start

Completed

entry: timerK.start

- / s_Request {a1}
r_Response1xx

{e2}

timerE.timeout / s_Request {e4/a3}

r_Response1xx
{e5}

r_Response_2xx_6xx
{e6}

r_Response2xx_6xx
{e3}

Terminated
timerK.timeout

{e7}

timerE.timeout / s_Request {e1/a2}

Fig. 3. SIP UAC non-INVITE reusable test module

as the actions in the Statecharts notation are represented by
protocol messages (both requests and responses). The entry
point into the reusable test module is the “Start” state which
contains a transition to the state “Trying” which holds the
action “s Request”. The prefix “s” is an abbreviation for
“send” and refers to the SUT that actually sends a message by
this statement. Once in the “Trying” state, there are three valid
optional paths that can be taken, either to the “Proceeding”
state with the “r Response1xx” event, to the “Completed”
state with the “r Response2xx 6xx” event, or to the “Trying”
state again with the timeout event of “timerE”. The “r” prefix
here represents messages that are actually received by the SUT.
In principle, the alternative paths describe potential behaviour
of the SUT. It could happen that based on the “s Request”, the
SUT directly has to receive either a provisional SIP message
(e.g. “100 Trying”) or a successful one (e.g. “200 OK”). All
these cases are considered within the reusable test module
and might occur. Therefore, the different optional paths are
the foundation of the test cases to be generated.

Before focusing on the test case derivation, the composition
algorithm performed by the ACE (see Fig. 1) to generate be-
haviour models is introduced. The following steps are included
in the algorithm:

1) Reading STD instance.
2) Selection of relevant reusable test modules and their

instantiation based on the behavioural perspective.
3) Reading of relevant variables and parameterisation of

test module instances.
4) Composition of test module instances.
The first three steps are rather static and just refer to the

identification of the test modules based on the CI definition
in the STD as well as their parameterisation through the
“Parameter” definitions. The final step 4 considers the pi-
calculus-based flow descriptions in the STD instance. For
each flow, the algorithm categorises the steps within it and
performs accordingly. A flow step can describe the sending
(see Table II, “c<forwMsg>”) or the receiving (see Table II,
“a(initMsg)”) of messages. It can also contain conditions or it
can be the so-called “null step”. There is also a fifth category,
the definition of concurrent behaviour. Such a pi-calculus
definition uses the statement “—” to specify concurrency.

After categorising the steps, the test module instances are
composed or connected according to the sequence of steps
within the flows. As illustrated in Fig. 3, each test module
contains a “Start” state and a “Terminated” state. These states
are the direct connector states between test modules. If there
is, for instance, a sequence of a sending and a receiving step,
the algorithm generates a new transition from “Terminated”
state of the test module instance related to the sending step
until the “Start” state of the test module instance related to
the receiving step. In this simple case, the behaviour model
instance would include two test module instances. If the step
includes a condition, guards are included within the transitions
that lead to the upcoming alternative steps. If a concurrent
step is parsed, the algorithm creates a new instance of a
Statecharts hierarchical AND-state. Within the AND-state, the
two corresponding test module instances are included. If a null
step is detected by the algorithm, an end state is included in
the corresponding behaviour model instance.

V. TEST CASE GENERATION

After the behaviour model generation is completed, the
TCDU (see Fig. 1) derives test cases from the models. For
transition-based models such as Statecharts, generally struc-
tural coverage criteria are applied. Based on the selected
criterion, a test case generator automatically generates a set
of paths within the model from an initial state to an end state.
Well-known structural criteria are for instance “All-States”
(every defined state within a given model is visited at least
once) and “All-Transitions” (every transition of the model
must be traversed at least once), but there are many others,
too. The selection of a proper structural coverage criterion
depends a lot on the underlying formal model. If the model
contains many alternative branches and also loops, typical All-
Paths-based criteria (such as “All-Paths” and “All-k-Loops-
Paths”) lead to an infinite number of test paths. In fact, the
underlying models applied in this approach can contain quite a
lot of branches and self-transitions (see Fig. 3). Therefore, the
structural coverage criterion “All-Round-Trips” was selected.
Its application generates a test case for each loop in the
model and that it only has to iterate once around the loop. In
comparison to the All-Paths-based criteria, it can be satisfied
with a linear number of test cases and it is able to detect faults
more thoroughly than criteria such as “All-States” and “All-
Transitions”. Furthermore, it is recommended in literature, e.g.
by [9].

The principles of test case derivation following the “All-
Round-Trips” structural coverage criterion will be exemplified
by means of the “SIP UAC non-INVITE” reusable test module
(see Fig. 3). Based on its behavioural description, the derived
test cases are illustrated in Fig. 4.

The state names within Fig. 3 have been abbreviated in
Fig. 4 (“Start” to “S”, “Trying” to “Tr”, “Proceeding” to “P”,
“Completed” to “C” and “Terminated” to “Te”). “TC1” and
“TC2” in Fig. 4 are based on the “All-Transitions” criterion
without loops. Both test cases describe a standard behaviour
of a SIP request being sent from the SUT to the participating

TC1

TC2

TC3

TC4

TC5

S Tr C Tee7

S Tr P Ce6

S Tr Tr Ce3

S Tr P Pa1

S Tr P Pa1

Tee7

Te

C

Ce6

Tee7

Tee7

Fig. 4. Derived test cases from SIP UAC non-INVITE

entities. The other three test cases “TC3”, “TC4” and “TC5”
refer back to the three loops or rather self-transitions that are
part of the behavioural description of the “SIP UAC non-
INVITE” reusable test module. As it is a client core-based
reusable test module, the SUT acts as a trigger by sending
the initial request. The test execution environment will react
based on the request and will send the appropriate responses
the SUT has to deal with. The example test case derivation
illustrates how the test case derivation for a reusable test
module would look like. Considering a value-added service,
the output of the test derivation phase is an abstract test suite
which includes sets of abstract test cases (see Fig. 4) for each
generated behaviour model. In the following step, the TCG
reads the abstract test suite and generates a test configuration
based on the architectural information defined in the STD (e.g.
identification of test components). The TCG then continues
with the generation of the test data which requires a connection
to the TDP. As a result, for each variable instance, a so-
called TTCN-3 template will be generated. Afterwards, the
abstract test cases belonging to specific behaviour models will
be transformed to TTCN-3 modules which include TTCN-
3 test cases. The test behaviour creation process includes all
particularities that are integrated in the abstract test cases such
as the sending of messages initiated by the test system, the sub-
sequent receiving and evaluation of messages from the SUT,
the handling of conditions and timers as well as the description
of concurrency between the defined test components. The final
step of the TCG is to deliver the generated TTCN-3 code to
the TSB which will subsequently create an executable test
suite (ETS). This ETS is executed within a TTCN-3-based
test execution environment.

VI. EVALUATION OF THE CONCEPT

A prototypical implementation has been developed based
on the TCF architecture. The prototype includes a web-based
front end which enables a test developer to define STD
instances and initialise the testing process. Furthermore, he
can maintain already existing STDs and retrieve information
about the test monitoring. In the back end, each of the TCF
architecture components have been implemented in so-called
OSGi bundles within a Java-based OSGi

Several example value-added services have been specified
using the prototype such as a more extensive example of the

chat service. A further example service is the so-called “pizza
service”, a service which automatically established an audio
call between the service consumer and a nearby pizzeria.

The result of the validation of the concept has shown
that our proposed approach has a ROI of 128% compared
to traditional manual testing approaches and a ROI of 32%
compared to model-based testing approaches such as described
in [8].

VII. CONCLUSION

This publication presents a novel framework for the au-
tomated functional testing of value-added services. For the
TCF methodology, a new service description language has
been developed, the STD. It comprises both service-specific
and test-specific properties and is the only manual task in
the process which has to be done by the test developer.
The structure of the STD considers aspects of reusability
through so-called reusable test modules and is based on a
simple pi-calculus description. The derivation of test cases
in the TCF is based on formal Statecharts-based models
which are automatically generated by an efficient composition
algorithm. A well-known problem from other test frameworks,
the generation of an infinite number of test cases, has been
solved by applying the efficient “All-Round-Trip” structural
coverage criterion. The concept has been evaluated by means
of a prototype implementation.

REFERENCES

[1] A. Lehmann, T. Eichelmann, U. Trick, R. Lasch, B. Ricks, and R. Toenjes,
“Teamcom: a service creation platform for next generation networks,” in
Proc. IEEE International Conference on Internet and Web Applications
and Services (ICIW09), Venice, Italy, May 2009, pp. 12–17.

[2] Methods for Testing and Specification (MTS); Model-Based
Testing (MBT); Requirements for Modelling Notations, European
Telecommunications Standard Institute Std., Rev. ETSI ES 202 951
V1.1.1, 2011. [Online]. Available: http://www.etsi.org

[3] P. Wacht, T. Eichelmann, A. Lehmann, and U. Trick, “A new approach
to design graphically functional tests for communication services,” in
Proc. IEEE International Conference on New Technologies, Mobility and
Security (NTMS11), Paris, France, Feb. 2011, pp. 1–5.

[4] J. Ernits, A. Kull, K. Raiend, and J. Vain, “Generating ttcn-3 test cases
from efsm models of reactive software using model checking,” in Proc.
Jahrestagung der Gesellschaft fuer Informatik e.V., vol. 94, Oct. 2006,
pp. 241–248.

[5] P. Wacht, U. Trick, W. Fuhrmann, and B. Ghita, “A new service
description for communication services as basis for automated functional
testing,” in Proc. IEEE International Conference on Future Generation
Communication Technology (FGCT13), London, United Kingdom, Dec.
2013, pp. 59–64.

[6] A.-G. Feudjio, “Model-driven functional test engineering for service
centric systems,” in Proc. IEEE International Conference on Testbeds
and Research Infrastructures for the Development of Networks and
Communities and Workshops (TridentCom09), Washington D.C., USA,
Apr. 2009, pp. 1–7.

[7] UML Testing Profile (UTP), Object Management Group Std.,
Rev. OMG UTP Version 1.2, 2013. [Online]. Available:
http://www.omg.org/spec/UTP/1.2

[8] SIP: Session Initiation Protocol, Internet Engineering Task
Force Std., Rev. IETF RFC 3261, 2002. [Online]. Available:
https://www.ietf.org/rfc/rfc3261.txt

[9] G. Antoniol, L. Briand, M. D. Penta, and Y. Labiche, “A case study
using the round-trip strategy for state-based class testing,” in Proc. IEEE
International Symposium on Software Reliability Engineering (ISSRE02),
Annapolis, USA, Nov. 2002, pp. 269–279.

